Achim Blumensath, Thomas Colcombet, Denis Kuperberg, P. Parys, M. V. Boom
{"title":"双向成本自动机和无限树上的成本逻辑","authors":"Achim Blumensath, Thomas Colcombet, Denis Kuperberg, P. Parys, M. V. Boom","doi":"10.1145/2603088.2603104","DOIUrl":null,"url":null,"abstract":"Regular cost functions provide a quantitative extension of regular languages that retains most of their important properties, such as expressive power and decidability, at least over finite and infinite words and over finite trees. Much less is known over infinite trees. We consider cost functions over infinite trees defined by an extension of weak monadic second-order logic with a new fixed-point-like operator. We show this logic to be decidable, improving previously known decidability results for cost logics over infinite trees. The proof relies on an equivalence with a form of automata with counters called quasi-weak cost automata, as well as results about converting two-way alternating cost automata to one-way alternating cost automata.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Two-way cost automata and cost logics over infinite trees\",\"authors\":\"Achim Blumensath, Thomas Colcombet, Denis Kuperberg, P. Parys, M. V. Boom\",\"doi\":\"10.1145/2603088.2603104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regular cost functions provide a quantitative extension of regular languages that retains most of their important properties, such as expressive power and decidability, at least over finite and infinite words and over finite trees. Much less is known over infinite trees. We consider cost functions over infinite trees defined by an extension of weak monadic second-order logic with a new fixed-point-like operator. We show this logic to be decidable, improving previously known decidability results for cost logics over infinite trees. The proof relies on an equivalence with a form of automata with counters called quasi-weak cost automata, as well as results about converting two-way alternating cost automata to one-way alternating cost automata.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-way cost automata and cost logics over infinite trees
Regular cost functions provide a quantitative extension of regular languages that retains most of their important properties, such as expressive power and decidability, at least over finite and infinite words and over finite trees. Much less is known over infinite trees. We consider cost functions over infinite trees defined by an extension of weak monadic second-order logic with a new fixed-point-like operator. We show this logic to be decidable, improving previously known decidability results for cost logics over infinite trees. The proof relies on an equivalence with a form of automata with counters called quasi-weak cost automata, as well as results about converting two-way alternating cost automata to one-way alternating cost automata.