具有不同形状的封闭表面,SRNF无法区分

IF 0.5 Q3 MATHEMATICS
E. Klassen, P. Michor
{"title":"具有不同形状的封闭表面,SRNF无法区分","authors":"E. Klassen, P. Michor","doi":"10.5817/am2020-2-107","DOIUrl":null,"url":null,"abstract":"The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [3], provides a way of representing immersed surfaces in $\\mathbb R^3$, and equipping the set of these immersions with a \"distance function\" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of $\\mathbb R^3$. Thus, it induces a distance function on the shape space of immersions, i.e., the space of immersions modulo reparametrizations and rigid motions of $\\mathbb R^3$. In this paper, we give examples of the degeneracy of this distance function, i.e., examples of immersed surfaces (some closed and some open) that have the same SRNF, but are not the same up to reparametrization and rigid motions. We also prove that the SRNF does distinguish the shape of a standard sphere from the shape of any other immersed surface, and does distinguish between the shapes of any two embedded strictly convex surfaces.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Closed surfaces with different shapes that are indistinguishable by the SRNF\",\"authors\":\"E. Klassen, P. Michor\",\"doi\":\"10.5817/am2020-2-107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [3], provides a way of representing immersed surfaces in $\\\\mathbb R^3$, and equipping the set of these immersions with a \\\"distance function\\\" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of $\\\\mathbb R^3$. Thus, it induces a distance function on the shape space of immersions, i.e., the space of immersions modulo reparametrizations and rigid motions of $\\\\mathbb R^3$. In this paper, we give examples of the degeneracy of this distance function, i.e., examples of immersed surfaces (some closed and some open) that have the same SRNF, but are not the same up to reparametrization and rigid motions. We also prove that the SRNF does distinguish the shape of a standard sphere from the shape of any other immersed surface, and does distinguish between the shapes of any two embedded strictly convex surfaces.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2020-2-107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2020-2-107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

Jermyn等人在[3]中引入的平方根正态域(SRNF)提供了一种用$\mathbb R^3$表示浸入曲面的方法,并为这些浸入的集合配备了易于计算的“距离函数”(准确地说,是伪度量)。重要的是,这个距离函数在再参数化(即,在域表面的自微分同态下)和$\mathbb R^3$的刚性运动下是不变的。因此,它在浸入的形状空间上推导出一个距离函数,即浸入的模重参数化空间和刚性运动$\mathbb R^3$。在本文中,我们给出了这个距离函数的简并性的例子,即具有相同SRNF的浸入曲面(有些是闭合的,有些是开放的)的例子,但在重参数化和刚性运动方面并不相同。我们还证明了SRNF确实区分了标准球面的形状与任何其他浸入表面的形状,并且区分了任何两个嵌入的严格凸表面的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed surfaces with different shapes that are indistinguishable by the SRNF
The Square Root Normal Field (SRNF), introduced by Jermyn et al. in [3], provides a way of representing immersed surfaces in $\mathbb R^3$, and equipping the set of these immersions with a "distance function" (to be precise, a pseudometric) that is easy to compute. Importantly, this distance function is invariant under reparametrizations (i.e., under self-diffeomorphisms of the domain surface) and under rigid motions of $\mathbb R^3$. Thus, it induces a distance function on the shape space of immersions, i.e., the space of immersions modulo reparametrizations and rigid motions of $\mathbb R^3$. In this paper, we give examples of the degeneracy of this distance function, i.e., examples of immersed surfaces (some closed and some open) that have the same SRNF, but are not the same up to reparametrization and rigid motions. We also prove that the SRNF does distinguish the shape of a standard sphere from the shape of any other immersed surface, and does distinguish between the shapes of any two embedded strictly convex surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信