一种学习马氏度量的随机算法:在生物数据分类和回归中的应用

C. Langmead
{"title":"一种学习马氏度量的随机算法:在生物数据分类和回归中的应用","authors":"C. Langmead","doi":"10.1142/9781860947292_0025","DOIUrl":null,"url":null,"abstract":"We present a randomized algorithm for semi-supervised learning of Mahalanobis metrics over Rn. The inputs to the algorithm are a set, U , of unlabeled points in Rn, a set of pairs of points, S = {(x, y)i};x, y ∈ U , that are known to be similar, and a set of pairs of points, D = {(x, y)i};x, y ∈ U , that are known to be dissimilar. The algorithm randomly samples S, D, and m-dimensional subspaces of Rn and learns a metric for each subspace. The metric over Rn is a linear combination of the subspace metrics. The randomization addresses issues of efficiency and overfitting. Extensions of the algorithm to learning non-linear metrics via kernels, and as a pre-processing step for dimensionality reduction are discussed. The new method is demonstrated on a regression problem (structure-based chemical shift prediction) and a classification problem (predicting clinical outcomes for immunomodulatory strategies for treating severe sepsis).","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"8 1","pages":"217-226"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Randomized Algorithm for Learning Mahalanobis Metrics: Application to Classification and Regression of Biological Data\",\"authors\":\"C. Langmead\",\"doi\":\"10.1142/9781860947292_0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a randomized algorithm for semi-supervised learning of Mahalanobis metrics over Rn. The inputs to the algorithm are a set, U , of unlabeled points in Rn, a set of pairs of points, S = {(x, y)i};x, y ∈ U , that are known to be similar, and a set of pairs of points, D = {(x, y)i};x, y ∈ U , that are known to be dissimilar. The algorithm randomly samples S, D, and m-dimensional subspaces of Rn and learns a metric for each subspace. The metric over Rn is a linear combination of the subspace metrics. The randomization addresses issues of efficiency and overfitting. Extensions of the algorithm to learning non-linear metrics via kernels, and as a pre-processing step for dimensionality reduction are discussed. The new method is demonstrated on a regression problem (structure-based chemical shift prediction) and a classification problem (predicting clinical outcomes for immunomodulatory strategies for treating severe sepsis).\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"8 1\",\"pages\":\"217-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种随机算法,用于半监督学习的马氏度量在Rn上。算法的输入是Rn中未标记点的集合U,已知相似的点对集合S = {(x, y)i};x, y∈U,以及已知不相似的点对集合D = {(x, y)i};x, y∈U。该算法随机采样Rn的S、D、m维子空间,并为每个子空间学习一个度量。Rn上的度规是子空间度规的线性组合。随机化解决了效率和过拟合的问题。将该算法扩展到通过核学习非线性度量,并作为降维的预处理步骤进行了讨论。新方法在一个回归问题(基于结构的化学位移预测)和一个分类问题(预测治疗严重脓毒症的免疫调节策略的临床结果)上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Randomized Algorithm for Learning Mahalanobis Metrics: Application to Classification and Regression of Biological Data
We present a randomized algorithm for semi-supervised learning of Mahalanobis metrics over Rn. The inputs to the algorithm are a set, U , of unlabeled points in Rn, a set of pairs of points, S = {(x, y)i};x, y ∈ U , that are known to be similar, and a set of pairs of points, D = {(x, y)i};x, y ∈ U , that are known to be dissimilar. The algorithm randomly samples S, D, and m-dimensional subspaces of Rn and learns a metric for each subspace. The metric over Rn is a linear combination of the subspace metrics. The randomization addresses issues of efficiency and overfitting. Extensions of the algorithm to learning non-linear metrics via kernels, and as a pre-processing step for dimensionality reduction are discussed. The new method is demonstrated on a regression problem (structure-based chemical shift prediction) and a classification problem (predicting clinical outcomes for immunomodulatory strategies for treating severe sepsis).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信