跳跃阈值框架下的信用风险建模

Q3 Mathematics
Chun-Yuan Chiu, A. Kercheval
{"title":"跳跃阈值框架下的信用风险建模","authors":"Chun-Yuan Chiu, A. Kercheval","doi":"10.1080/1350486X.2018.1465349","DOIUrl":null,"url":null,"abstract":"ABSTRACT The jump threshold framework for credit risk modelling developed by Garreau and Kercheval enjoys the advantages of both structural- and reduced-form models. In their article, the focus is on multidimensional default dependence, under the assumptions that stock prices follow an exponential Lévy process (i.i.d. log returns) and that interest rates and stock volatility are constant. Explicit formulas for default time distributions and basket credit default swap (CDS) prices are obtained when the default threshold is deterministic, but only in terms of expectations when the default threshold is stochastic. In this article, we restrict attention to the one-dimensional, single-name case in order to obtain explicit closed-form solutions for the default time distribution when the default threshold, interest rate and volatility are all stochastic. When the interest rate and volatility processes are affine diffusions and the stochastic default threshold is properly chosen, we provide explicit formulas for the default time distribution, prices of defaultable bonds and CDS premia. The main idea is to make use of the Duffie–Pan–Singleton method of evaluating expectations of exponential integrals of affine diffusions.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"81 1","pages":"411 - 433"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Credit Risk in the Jump Threshold Framework\",\"authors\":\"Chun-Yuan Chiu, A. Kercheval\",\"doi\":\"10.1080/1350486X.2018.1465349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The jump threshold framework for credit risk modelling developed by Garreau and Kercheval enjoys the advantages of both structural- and reduced-form models. In their article, the focus is on multidimensional default dependence, under the assumptions that stock prices follow an exponential Lévy process (i.i.d. log returns) and that interest rates and stock volatility are constant. Explicit formulas for default time distributions and basket credit default swap (CDS) prices are obtained when the default threshold is deterministic, but only in terms of expectations when the default threshold is stochastic. In this article, we restrict attention to the one-dimensional, single-name case in order to obtain explicit closed-form solutions for the default time distribution when the default threshold, interest rate and volatility are all stochastic. When the interest rate and volatility processes are affine diffusions and the stochastic default threshold is properly chosen, we provide explicit formulas for the default time distribution, prices of defaultable bonds and CDS premia. The main idea is to make use of the Duffie–Pan–Singleton method of evaluating expectations of exponential integrals of affine diffusions.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"81 1\",\"pages\":\"411 - 433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2018.1465349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1465349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Garreau和Kercheval提出的信用风险模型跳跃阈值框架具有结构模型和简化模型的优点。在他们的文章中,重点是多维违约依赖,假设股票价格遵循指数lsamvy过程(i.i.d log回报),利率和股票波动是恒定的。当违约阈值为确定性时,可以得到违约时间分布和一篮子信用违约互换(CDS)价格的显式公式,而当违约阈值为随机时,则只能得到预期的显式公式。在本文中,我们将注意力限制在一维,单名称情况下,以获得当违约阈值,利率和波动率都是随机时的默认时间分布的显式闭形式解。当利率和波动率过程为仿射扩散时,选择合适的随机违约阈值,给出了违约时间分布、违约债券价格和CDS溢价的明确公式。主要思想是利用Duffie-Pan-Singleton方法来评估仿射扩散的指数积分的期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Credit Risk in the Jump Threshold Framework
ABSTRACT The jump threshold framework for credit risk modelling developed by Garreau and Kercheval enjoys the advantages of both structural- and reduced-form models. In their article, the focus is on multidimensional default dependence, under the assumptions that stock prices follow an exponential Lévy process (i.i.d. log returns) and that interest rates and stock volatility are constant. Explicit formulas for default time distributions and basket credit default swap (CDS) prices are obtained when the default threshold is deterministic, but only in terms of expectations when the default threshold is stochastic. In this article, we restrict attention to the one-dimensional, single-name case in order to obtain explicit closed-form solutions for the default time distribution when the default threshold, interest rate and volatility are all stochastic. When the interest rate and volatility processes are affine diffusions and the stochastic default threshold is properly chosen, we provide explicit formulas for the default time distribution, prices of defaultable bonds and CDS premia. The main idea is to make use of the Duffie–Pan–Singleton method of evaluating expectations of exponential integrals of affine diffusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信