MicroRNA表达分类用于人类疾病预测

Ines Slimene, Imen Messaoudi, A. Oueslati, Z. Lachiri
{"title":"MicroRNA表达分类用于人类疾病预测","authors":"Ines Slimene, Imen Messaoudi, A. Oueslati, Z. Lachiri","doi":"10.1109/SSD52085.2021.9429451","DOIUrl":null,"url":null,"abstract":"Recent research has shown that microRNA plays an important role in human disease specification. Study of miRNA expression helps to accelerate the diagnosis of diseases and to anticipate treatment. However experimental identification of diseases from microRNA expression such as RPM poses difficulties. Nowadays, we haven't enough bioinformatics algorithm to predict the association between miRNA and diseases. Herein, we present a machine learning based approach for distinguishing patient from normal person based on miRNA expression. In this paper, we compare different machine learning algorithms such as SVM, KNN and logistic regression to predict infected gene from miRNAs RPM values.","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"29 1","pages":"1209-1214"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA expression classification for human disease prediction\",\"authors\":\"Ines Slimene, Imen Messaoudi, A. Oueslati, Z. Lachiri\",\"doi\":\"10.1109/SSD52085.2021.9429451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that microRNA plays an important role in human disease specification. Study of miRNA expression helps to accelerate the diagnosis of diseases and to anticipate treatment. However experimental identification of diseases from microRNA expression such as RPM poses difficulties. Nowadays, we haven't enough bioinformatics algorithm to predict the association between miRNA and diseases. Herein, we present a machine learning based approach for distinguishing patient from normal person based on miRNA expression. In this paper, we compare different machine learning algorithms such as SVM, KNN and logistic regression to predict infected gene from miRNAs RPM values.\",\"PeriodicalId\":6799,\"journal\":{\"name\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"29 1\",\"pages\":\"1209-1214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD52085.2021.9429451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来的研究表明,microRNA在人类疾病规范中起着重要的作用。miRNA表达的研究有助于加快疾病的诊断和预测治疗。然而,从微小rna表达(如RPM)来实验鉴定疾病存在困难。目前,我们还没有足够的生物信息学算法来预测miRNA与疾病之间的关系。在这里,我们提出了一种基于机器学习的方法,基于miRNA表达来区分患者和正常人。在本文中,我们比较了不同的机器学习算法,如SVM, KNN和逻辑回归,以预测miRNAs RPM值的感染基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MicroRNA expression classification for human disease prediction
Recent research has shown that microRNA plays an important role in human disease specification. Study of miRNA expression helps to accelerate the diagnosis of diseases and to anticipate treatment. However experimental identification of diseases from microRNA expression such as RPM poses difficulties. Nowadays, we haven't enough bioinformatics algorithm to predict the association between miRNA and diseases. Herein, we present a machine learning based approach for distinguishing patient from normal person based on miRNA expression. In this paper, we compare different machine learning algorithms such as SVM, KNN and logistic regression to predict infected gene from miRNAs RPM values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信