用乳房x光图像比较和识别精确的频域方法

B. Kiran Bala, I. I. Raj
{"title":"用乳房x光图像比较和识别精确的频域方法","authors":"B. Kiran Bala, I. I. Raj","doi":"10.1109/icpcsi.2017.8392174","DOIUrl":null,"url":null,"abstract":"To identify the variation between tumor and breast cancer in earlier stage itself with the help of mammogram images by using MIAS database. To extract the best transforms in frequency domain with the help of comparative analysis of result, The proposed sectional metric for the identification for the input images like age wise, left and right image taken in this process and finally from the result system taken this transform for the entire process.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"28 1","pages":"2536-2538"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative and identification of exact frequency domain approaches by using mammogram images\",\"authors\":\"B. Kiran Bala, I. I. Raj\",\"doi\":\"10.1109/icpcsi.2017.8392174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To identify the variation between tumor and breast cancer in earlier stage itself with the help of mammogram images by using MIAS database. To extract the best transforms in frequency domain with the help of comparative analysis of result, The proposed sectional metric for the identification for the input images like age wise, left and right image taken in this process and finally from the result system taken this transform for the entire process.\",\"PeriodicalId\":6589,\"journal\":{\"name\":\"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)\",\"volume\":\"28 1\",\"pages\":\"2536-2538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icpcsi.2017.8392174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpcsi.2017.8392174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用MIAS数据库,借助乳房x线照片识别肿瘤与早期乳腺癌本身的差异。通过对结果的对比分析,在频域上提取出最佳变换,提出了对输入图像进行识别的截面度量,如年龄、左右图像,最后从结果系统中对整个过程进行该变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative and identification of exact frequency domain approaches by using mammogram images
To identify the variation between tumor and breast cancer in earlier stage itself with the help of mammogram images by using MIAS database. To extract the best transforms in frequency domain with the help of comparative analysis of result, The proposed sectional metric for the identification for the input images like age wise, left and right image taken in this process and finally from the result system taken this transform for the entire process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信