{"title":"失败时间的l<s:1> -脆弱马歇尔-奥尔金模型的近似","authors":"Javiera Barrera, Guido Lagos","doi":"10.1109/WSC48552.2020.9383929","DOIUrl":null,"url":null,"abstract":"In this paper we approximate the last, close-to-first, and what we call quantile failure times of a system, when the system-components’ failure times are modeled according to a Levy-frailty Marshall-Olkin (LFMO) distribution. The LFMO distribution is a fairly recent model that can be used to model components failing simultaneously in groups. One of its prominent features is that the failure times of the components are conditionally iid; indeed, the failure times are iid exponential when conditioned on the path of a given Lévy subordinator process. We are motivated by further studying the order statistics of the LFMO distribution, as recently Barrera and Lagos (2020) showed an atypical behavior for the upper-order statistics. We are also motivated by approximating the system when it has an astronomically large number of components. We perform computational experiments that show significative variations in the convergence speeds of our approximations.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"20 4 1","pages":"2389-2399"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the Lévy-Frailty Marshall-Olkin Model for Failure Times\",\"authors\":\"Javiera Barrera, Guido Lagos\",\"doi\":\"10.1109/WSC48552.2020.9383929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we approximate the last, close-to-first, and what we call quantile failure times of a system, when the system-components’ failure times are modeled according to a Levy-frailty Marshall-Olkin (LFMO) distribution. The LFMO distribution is a fairly recent model that can be used to model components failing simultaneously in groups. One of its prominent features is that the failure times of the components are conditionally iid; indeed, the failure times are iid exponential when conditioned on the path of a given Lévy subordinator process. We are motivated by further studying the order statistics of the LFMO distribution, as recently Barrera and Lagos (2020) showed an atypical behavior for the upper-order statistics. We are also motivated by approximating the system when it has an astronomically large number of components. We perform computational experiments that show significative variations in the convergence speeds of our approximations.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"20 4 1\",\"pages\":\"2389-2399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9383929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximating the Lévy-Frailty Marshall-Olkin Model for Failure Times
In this paper we approximate the last, close-to-first, and what we call quantile failure times of a system, when the system-components’ failure times are modeled according to a Levy-frailty Marshall-Olkin (LFMO) distribution. The LFMO distribution is a fairly recent model that can be used to model components failing simultaneously in groups. One of its prominent features is that the failure times of the components are conditionally iid; indeed, the failure times are iid exponential when conditioned on the path of a given Lévy subordinator process. We are motivated by further studying the order statistics of the LFMO distribution, as recently Barrera and Lagos (2020) showed an atypical behavior for the upper-order statistics. We are also motivated by approximating the system when it has an astronomically large number of components. We perform computational experiments that show significative variations in the convergence speeds of our approximations.