一种新的引导滤波初始化水平集模型用于PET-CT图像自动分割

Shuhua Bai , Xiaojian Qiu , Rongqun Hu , Yunqiang Wu
{"title":"一种新的引导滤波初始化水平集模型用于PET-CT图像自动分割","authors":"Shuhua Bai ,&nbsp;Xiaojian Qiu ,&nbsp;Rongqun Hu ,&nbsp;Yunqiang Wu","doi":"10.1016/j.cogr.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Positron emission tomography (PET) and computed tomography (CT) scanner image analysis plays an important role in clinical radiotherapy treatment. PET and CT images provide complementary cues for identifying tumor tissues. In specific, PET images can clearly denote the tumor tissue, whereas this source suffers from the problem of low spatial resolution. On the contrary, CT images have a high resolution, but they can not recognize the tumor from normal tissues. In this work, we firstly fuse PET and CT images by using the guided filter. Then, a region and edge-based level set model is proposed to segment PET-CT fusion images. At last, a normalization term is designed by combining length, distance and H<sup>1</sup> terms with the aim to improve segmentation accuracy. The proposed method was validated in the robust delineation of lung tumor tissues on 20 PET-CT samples. Both qualitative and quantitative results demonstrate significant improvement compared to both the data-independent and deep learning based segmentation methods.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 193-201"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000180/pdfft?md5=19e625c37228b4881aaccfb4c3123000&pid=1-s2.0-S2667241322000180-main.pdf","citationCount":"1","resultStr":"{\"title\":\"A novel level set model initialized with guided filter for automated PET-CT image segmentation\",\"authors\":\"Shuhua Bai ,&nbsp;Xiaojian Qiu ,&nbsp;Rongqun Hu ,&nbsp;Yunqiang Wu\",\"doi\":\"10.1016/j.cogr.2022.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Positron emission tomography (PET) and computed tomography (CT) scanner image analysis plays an important role in clinical radiotherapy treatment. PET and CT images provide complementary cues for identifying tumor tissues. In specific, PET images can clearly denote the tumor tissue, whereas this source suffers from the problem of low spatial resolution. On the contrary, CT images have a high resolution, but they can not recognize the tumor from normal tissues. In this work, we firstly fuse PET and CT images by using the guided filter. Then, a region and edge-based level set model is proposed to segment PET-CT fusion images. At last, a normalization term is designed by combining length, distance and H<sup>1</sup> terms with the aim to improve segmentation accuracy. The proposed method was validated in the robust delineation of lung tumor tissues on 20 PET-CT samples. Both qualitative and quantitative results demonstrate significant improvement compared to both the data-independent and deep learning based segmentation methods.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 193-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000180/pdfft?md5=19e625c37228b4881aaccfb4c3123000&pid=1-s2.0-S2667241322000180-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241322000180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

正电子发射断层扫描(PET)和计算机断层扫描(CT)扫描图像分析在临床放射治疗中起着重要作用。PET和CT图像为识别肿瘤组织提供了互补的线索。具体而言,PET图像可以清晰地表示肿瘤组织,但该来源存在空间分辨率低的问题。相反,CT图像分辨率高,但不能从正常组织中识别肿瘤。在这项工作中,我们首先使用引导滤波器融合PET和CT图像。然后,提出了一种基于区域和边缘的水平集模型来分割PET-CT融合图像。最后,结合长度项、距离项和H1项设计一种归一化项,以提高分割精度。该方法在20个PET-CT样本上的肺肿瘤组织的鲁棒描绘中得到了验证。定性和定量结果都表明,与数据独立和基于深度学习的分割方法相比,该方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel level set model initialized with guided filter for automated PET-CT image segmentation

Positron emission tomography (PET) and computed tomography (CT) scanner image analysis plays an important role in clinical radiotherapy treatment. PET and CT images provide complementary cues for identifying tumor tissues. In specific, PET images can clearly denote the tumor tissue, whereas this source suffers from the problem of low spatial resolution. On the contrary, CT images have a high resolution, but they can not recognize the tumor from normal tissues. In this work, we firstly fuse PET and CT images by using the guided filter. Then, a region and edge-based level set model is proposed to segment PET-CT fusion images. At last, a normalization term is designed by combining length, distance and H1 terms with the aim to improve segmentation accuracy. The proposed method was validated in the robust delineation of lung tumor tissues on 20 PET-CT samples. Both qualitative and quantitative results demonstrate significant improvement compared to both the data-independent and deep learning based segmentation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信