Liyun Gong, Lu Zhang, Ming Zhu, Miao Yu, Ross Clifford, Carol Duff, Xujiong Ye, S. Kollias
{"title":"一种新的基于计算机视觉的数据驱动建模方法,用于人体特定的跌倒检测","authors":"Liyun Gong, Lu Zhang, Ming Zhu, Miao Yu, Ross Clifford, Carol Duff, Xujiong Ye, S. Kollias","doi":"10.3233/AIS-210611","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel person specific fall detection system based on a monocular camera, which can be applied for assisting the independent living of an older adult living alone at home. A single camera covering the living area is used for video recordings of an elderly person’s normal daily activities. From the recorded video data, the human silhouette regions in every frame are then extracted based on the codebook background subtraction technique. Low-dimensionality representative features of extracted silhouetted are then extracted by convolutional neural network-based autoencoder (CNN-AE). Features obtained from the CNN-AE are applied to construct an one class support vector machine (OCSVM) model, which is a data driven model based on the video recordings and can be applied for fall detection. From the comprehensive experimental evaluations on different people in a real home environment, it is shown that the proposed fall detection system can successfully detect different types of falls (falls towards different orientations at different positions in a real home environment) with small false alarms.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"167 1","pages":"373-387"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel computer vision-based data driven modelling approach for person specific fall detection\",\"authors\":\"Liyun Gong, Lu Zhang, Ming Zhu, Miao Yu, Ross Clifford, Carol Duff, Xujiong Ye, S. Kollias\",\"doi\":\"10.3233/AIS-210611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel person specific fall detection system based on a monocular camera, which can be applied for assisting the independent living of an older adult living alone at home. A single camera covering the living area is used for video recordings of an elderly person’s normal daily activities. From the recorded video data, the human silhouette regions in every frame are then extracted based on the codebook background subtraction technique. Low-dimensionality representative features of extracted silhouetted are then extracted by convolutional neural network-based autoencoder (CNN-AE). Features obtained from the CNN-AE are applied to construct an one class support vector machine (OCSVM) model, which is a data driven model based on the video recordings and can be applied for fall detection. From the comprehensive experimental evaluations on different people in a real home environment, it is shown that the proposed fall detection system can successfully detect different types of falls (falls towards different orientations at different positions in a real home environment) with small false alarms.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"167 1\",\"pages\":\"373-387\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/AIS-210611\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIS-210611","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel computer vision-based data driven modelling approach for person specific fall detection
In this paper, we propose a novel person specific fall detection system based on a monocular camera, which can be applied for assisting the independent living of an older adult living alone at home. A single camera covering the living area is used for video recordings of an elderly person’s normal daily activities. From the recorded video data, the human silhouette regions in every frame are then extracted based on the codebook background subtraction technique. Low-dimensionality representative features of extracted silhouetted are then extracted by convolutional neural network-based autoencoder (CNN-AE). Features obtained from the CNN-AE are applied to construct an one class support vector machine (OCSVM) model, which is a data driven model based on the video recordings and can be applied for fall detection. From the comprehensive experimental evaluations on different people in a real home environment, it is shown that the proposed fall detection system can successfully detect different types of falls (falls towards different orientations at different positions in a real home environment) with small false alarms.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.