非均匀激光雷达数据提取道路标线的双自适应强度阈值法

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL
C. Ye, Hongfu Li, Rui-long Wei, Lixuan Wang, Tianbo Sui, Wensen Bai, Pirasteh Saied
{"title":"非均匀激光雷达数据提取道路标线的双自适应强度阈值法","authors":"C. Ye, Hongfu Li, Rui-long Wei, Lixuan Wang, Tianbo Sui, Wensen Bai, Pirasteh Saied","doi":"10.14358/pers.20-00099","DOIUrl":null,"url":null,"abstract":"Due to the large volume and high redundancy of point clouds, there are many dilemmas in road-marking extraction algorithms, especially from uneven lidar point clouds. To extract road markings efficiently, this study presents a novel method for handling the uneven density distribution\n of point clouds and the high reflection intensity of road markings. The method first segments the point-cloud data into blocks perpendicular to the vehicle trajectory. Then it applies the double adaptive intensity-threshold method to extract road markings from road surfaces. Finally, it performs\n an adaptive spatial density filter based on the density distribution of point-cloud data to remove false road-marking points. The average completeness, correctness, and F measure of road-marking extraction are 0.827, 0.887, and 0.854, respectively, indicating that the proposed method is efficient\n and robust.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Double Adaptive Intensity-Threshold Method for Uneven Lidar Data to Extract Road Markings\",\"authors\":\"C. Ye, Hongfu Li, Rui-long Wei, Lixuan Wang, Tianbo Sui, Wensen Bai, Pirasteh Saied\",\"doi\":\"10.14358/pers.20-00099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the large volume and high redundancy of point clouds, there are many dilemmas in road-marking extraction algorithms, especially from uneven lidar point clouds. To extract road markings efficiently, this study presents a novel method for handling the uneven density distribution\\n of point clouds and the high reflection intensity of road markings. The method first segments the point-cloud data into blocks perpendicular to the vehicle trajectory. Then it applies the double adaptive intensity-threshold method to extract road markings from road surfaces. Finally, it performs\\n an adaptive spatial density filter based on the density distribution of point-cloud data to remove false road-marking points. The average completeness, correctness, and F measure of road-marking extraction are 0.827, 0.887, and 0.854, respectively, indicating that the proposed method is efficient\\n and robust.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.20-00099\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.20-00099","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

由于点云的体积大、冗余度高,道路标线提取算法存在诸多困境,尤其是在不均匀激光雷达点云中。为了高效提取道路标线,提出了一种处理点云密度分布不均匀和道路标线反射强度高的新方法。该方法首先将点云数据分割成垂直于车辆轨迹的块。然后应用双自适应强度阈值法提取路面标线;最后,基于点云数据的密度分布进行自适应空间密度滤波,去除虚假道路标记点。道路标线提取的平均完备性、正确性和F测度分别为0.827、0.887和0.854,表明该方法具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Adaptive Intensity-Threshold Method for Uneven Lidar Data to Extract Road Markings
Due to the large volume and high redundancy of point clouds, there are many dilemmas in road-marking extraction algorithms, especially from uneven lidar point clouds. To extract road markings efficiently, this study presents a novel method for handling the uneven density distribution of point clouds and the high reflection intensity of road markings. The method first segments the point-cloud data into blocks perpendicular to the vehicle trajectory. Then it applies the double adaptive intensity-threshold method to extract road markings from road surfaces. Finally, it performs an adaptive spatial density filter based on the density distribution of point-cloud data to remove false road-marking points. The average completeness, correctness, and F measure of road-marking extraction are 0.827, 0.887, and 0.854, respectively, indicating that the proposed method is efficient and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信