幂和正则元素的二重性质

Pub Date : 2022-03-20 DOI:10.1142/s1005386723000032
T. Kwak, Yang Lee, Zhelin Piao, Yeonsook Seo
{"title":"幂和正则元素的二重性质","authors":"T. Kwak, Yang Lee, Zhelin Piao, Yeonsook Seo","doi":"10.1142/s1005386723000032","DOIUrl":null,"url":null,"abstract":"The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements. Such rings shall be called right exp-DR. We investigate the structures of group rings, right quotient rings, matrix rings and (skew) polynomial rings, through the study of right exp-DR rings. In addition, we provide a method of constructing finite non-abelian [Formula: see text]-groups for any prime [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duo Property Applied to Powers and Regular Elements\",\"authors\":\"T. Kwak, Yang Lee, Zhelin Piao, Yeonsook Seo\",\"doi\":\"10.1142/s1005386723000032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements. Such rings shall be called right exp-DR. We investigate the structures of group rings, right quotient rings, matrix rings and (skew) polynomial rings, through the study of right exp-DR rings. In addition, we provide a method of constructing finite non-abelian [Formula: see text]-groups for any prime [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究一类环,在这些环中,对幂元和所有正则元的单阵应用了右对偶性质。这种环应称为右exp-DR。通过对右exp-DR环的研究,研究了群环、右商环、矩阵环和(斜)多项式环的结构。此外,我们还提供了一种构造任意素数的有限非阿贝尔群的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Duo Property Applied to Powers and Regular Elements
The object of this article is to initiate the study of a class of rings in which the right duo property is applied in relation to powers of elements and the monoid of all regular elements. Such rings shall be called right exp-DR. We investigate the structures of group rings, right quotient rings, matrix rings and (skew) polynomial rings, through the study of right exp-DR rings. In addition, we provide a method of constructing finite non-abelian [Formula: see text]-groups for any prime [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信