一种基于无监督图的相关主题检测方法:以俄罗斯-乌克兰冲突期间意大利Twitter群组为例

Inf. Comput. Pub Date : 2023-06-12 DOI:10.3390/info14060330
Enrico De Santis, A. Martino, Francesca Ronci, A. Rizzi
{"title":"一种基于无监督图的相关主题检测方法:以俄罗斯-乌克兰冲突期间意大利Twitter群组为例","authors":"Enrico De Santis, A. Martino, Francesca Ronci, A. Rizzi","doi":"10.3390/info14060330","DOIUrl":null,"url":null,"abstract":"On 24 February 2022, the invasion of Ukraine by Russian troops began, starting a dramatic conflict. As in all modern conflicts, the battlefield is both real and virtual. Social networks have had peaks in use and many scholars have seen a strong risk of disinformation. In this study, through an unsupervised topic tracking system implemented with Natural Language Processing and graph-based techniques framed within a biological metaphor, the Italian social context is analyzed, in particular, by processing data from Twitter (texts and metadata) captured during the first month of the war. The system, improved if compared to previous versions, has proved to be effective in highlighting the emerging topics, all the main events and any links between them.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unsupervised Graph-Based Approach for Detecting Relevant Topics: A Case Study on the Italian Twitter Cohort during the Russia-Ukraine Conflict\",\"authors\":\"Enrico De Santis, A. Martino, Francesca Ronci, A. Rizzi\",\"doi\":\"10.3390/info14060330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On 24 February 2022, the invasion of Ukraine by Russian troops began, starting a dramatic conflict. As in all modern conflicts, the battlefield is both real and virtual. Social networks have had peaks in use and many scholars have seen a strong risk of disinformation. In this study, through an unsupervised topic tracking system implemented with Natural Language Processing and graph-based techniques framed within a biological metaphor, the Italian social context is analyzed, in particular, by processing data from Twitter (texts and metadata) captured during the first month of the war. The system, improved if compared to previous versions, has proved to be effective in highlighting the emerging topics, all the main events and any links between them.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14060330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2022年2月24日,俄罗斯军队开始入侵乌克兰,引发了一场戏剧性的冲突。在所有现代冲突中,战场既是真实的也是虚拟的。社交网络的使用已经达到高峰,许多学者已经看到了虚假信息的巨大风险。在本研究中,通过使用自然语言处理和基于图形的技术在生物隐喻框架内实现的无监督主题跟踪系统,通过处理战争第一个月捕获的Twitter数据(文本和元数据),特别分析了意大利的社会背景。与以前的版本相比,该系统得到了改进,已被证明在突出新出现的主题、所有主要事件以及它们之间的任何联系方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unsupervised Graph-Based Approach for Detecting Relevant Topics: A Case Study on the Italian Twitter Cohort during the Russia-Ukraine Conflict
On 24 February 2022, the invasion of Ukraine by Russian troops began, starting a dramatic conflict. As in all modern conflicts, the battlefield is both real and virtual. Social networks have had peaks in use and many scholars have seen a strong risk of disinformation. In this study, through an unsupervised topic tracking system implemented with Natural Language Processing and graph-based techniques framed within a biological metaphor, the Italian social context is analyzed, in particular, by processing data from Twitter (texts and metadata) captured during the first month of the war. The system, improved if compared to previous versions, has proved to be effective in highlighting the emerging topics, all the main events and any links between them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信