基于模拟退火的最高后验模型计算和变量选择

A. Maity, S. Basu
{"title":"基于模拟退火的最高后验模型计算和变量选择","authors":"A. Maity, S. Basu","doi":"10.51387/23-nejsds40","DOIUrl":null,"url":null,"abstract":"Variable selection is widely used in all application areas of data analytics, ranging from optimal selection of genes in large scale micro-array studies, to optimal selection of biomarkers for targeted therapy in cancer genomics to selection of optimal predictors in business analytics. A formal way to perform this selection under the Bayesian approach is to select the model with highest posterior probability. The problem may be thought as an optimization problem over the model space where the objective function is the posterior probability of model. We propose to carry out this optimization using simulated annealing and we illustrate its feasibility in high dimensional problems. By means of various simulation studies, this new approach has been shown to be efficient. Theoretical justifications are provided and applications to high dimensional datasets are discussed. The proposed method is implemented in an R package sahpm for general use and is made available on R CRAN.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highest Posterior Model Computation and Variable Selection via Simulated Annealing\",\"authors\":\"A. Maity, S. Basu\",\"doi\":\"10.51387/23-nejsds40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable selection is widely used in all application areas of data analytics, ranging from optimal selection of genes in large scale micro-array studies, to optimal selection of biomarkers for targeted therapy in cancer genomics to selection of optimal predictors in business analytics. A formal way to perform this selection under the Bayesian approach is to select the model with highest posterior probability. The problem may be thought as an optimization problem over the model space where the objective function is the posterior probability of model. We propose to carry out this optimization using simulated annealing and we illustrate its feasibility in high dimensional problems. By means of various simulation studies, this new approach has been shown to be efficient. Theoretical justifications are provided and applications to high dimensional datasets are discussed. The proposed method is implemented in an R package sahpm for general use and is made available on R CRAN.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/23-nejsds40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

变量选择广泛应用于数据分析的所有应用领域,从大规模微阵列研究中的基因优化选择,到癌症基因组学中靶向治疗的生物标志物的优化选择,再到商业分析中最佳预测因子的选择。在贝叶斯方法下进行这种选择的一种正式方法是选择具有最高后验概率的模型。该问题可以看作是模型空间上的优化问题,其目标函数是模型的后验概率。我们建议使用模拟退火来进行这种优化,并说明了它在高维问题中的可行性。通过各种仿真研究,证明了这种新方法的有效性。给出了理论依据,并讨论了在高维数据集上的应用。所提出的方法在R包sahpm中实现,以供一般使用,并在R CRAN上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highest Posterior Model Computation and Variable Selection via Simulated Annealing
Variable selection is widely used in all application areas of data analytics, ranging from optimal selection of genes in large scale micro-array studies, to optimal selection of biomarkers for targeted therapy in cancer genomics to selection of optimal predictors in business analytics. A formal way to perform this selection under the Bayesian approach is to select the model with highest posterior probability. The problem may be thought as an optimization problem over the model space where the objective function is the posterior probability of model. We propose to carry out this optimization using simulated annealing and we illustrate its feasibility in high dimensional problems. By means of various simulation studies, this new approach has been shown to be efficient. Theoretical justifications are provided and applications to high dimensional datasets are discussed. The proposed method is implemented in an R package sahpm for general use and is made available on R CRAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信