{"title":"采样周期对数字PID控制器设计的影响","authors":"D. Tsamatsoulis","doi":"10.46300/91010.2021.15.14","DOIUrl":null,"url":null,"abstract":"The impact of the sampling period on the parameterization of a digital PID controller in the frequency domain is attempted using three different digital approximations of the integral action. The controller is implemented in the industrial process of regulation of the cement sulphates in the cement mill outlet. The maximum sensitivity, Ms, has been utilized as a main robustness criterion. For the same Ms, proportional and differential gain, a rise of the sampling period leads to a decrease of the integral gain ki for all the three approximations. For the same sampling period, the function between proportional and integral gain differs for the three approximations studied. If the design satisfies two criteria simultaneously, maximum sensitivity and phase margin in the current study, then the permissible PID gains zone becomes narrower.","PeriodicalId":14093,"journal":{"name":"International journal of energy science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the Sampling Period on the Design of Digital PID Controllers\",\"authors\":\"D. Tsamatsoulis\",\"doi\":\"10.46300/91010.2021.15.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of the sampling period on the parameterization of a digital PID controller in the frequency domain is attempted using three different digital approximations of the integral action. The controller is implemented in the industrial process of regulation of the cement sulphates in the cement mill outlet. The maximum sensitivity, Ms, has been utilized as a main robustness criterion. For the same Ms, proportional and differential gain, a rise of the sampling period leads to a decrease of the integral gain ki for all the three approximations. For the same sampling period, the function between proportional and integral gain differs for the three approximations studied. If the design satisfies two criteria simultaneously, maximum sensitivity and phase margin in the current study, then the permissible PID gains zone becomes narrower.\",\"PeriodicalId\":14093,\"journal\":{\"name\":\"International journal of energy science\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of energy science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91010.2021.15.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91010.2021.15.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of the Sampling Period on the Design of Digital PID Controllers
The impact of the sampling period on the parameterization of a digital PID controller in the frequency domain is attempted using three different digital approximations of the integral action. The controller is implemented in the industrial process of regulation of the cement sulphates in the cement mill outlet. The maximum sensitivity, Ms, has been utilized as a main robustness criterion. For the same Ms, proportional and differential gain, a rise of the sampling period leads to a decrease of the integral gain ki for all the three approximations. For the same sampling period, the function between proportional and integral gain differs for the three approximations studied. If the design satisfies two criteria simultaneously, maximum sensitivity and phase margin in the current study, then the permissible PID gains zone becomes narrower.