{"title":"求解复合单调包含问题的预条件Douglas-Rachford型原对偶方法及其应用","authors":"Yixuan Yang, Yuchao Tang, Meng Wen, T. Zeng","doi":"10.3934/IPI.2021014","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the monotone inclusion involving the sum of a finite number of maximally monotone operators and the parallel sum of two maximally monotone operators with bounded linear operators. To solve this monotone inclusion, we first transform it into the formulation of the sum of three maximally monotone operators in a proper product space. Then we derive two efficient iterative algorithms, which combine the partial inverse method with the preconditioned Douglas-Rachford splitting algorithm and the preconditioned proximal point algorithm. Furthermore, we develop an iterative algorithm, which relies on the preconditioned Douglas-Rachford splitting algorithm without using the partial inverse method. We carefully analyze the theoretical convergence of the proposed algorithms. Finally, in order to demonstrate the effectiveness and efficiency of these algorithms, we conduct numerical experiments on a novel image denoising model for salt-and-pepper noise removal. Numerical results show the good performance of the proposed algorithms.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"60 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Preconditioned Douglas-Rachford type primal-dual method for solving composite monotone inclusion problems with applications\",\"authors\":\"Yixuan Yang, Yuchao Tang, Meng Wen, T. Zeng\",\"doi\":\"10.3934/IPI.2021014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the monotone inclusion involving the sum of a finite number of maximally monotone operators and the parallel sum of two maximally monotone operators with bounded linear operators. To solve this monotone inclusion, we first transform it into the formulation of the sum of three maximally monotone operators in a proper product space. Then we derive two efficient iterative algorithms, which combine the partial inverse method with the preconditioned Douglas-Rachford splitting algorithm and the preconditioned proximal point algorithm. Furthermore, we develop an iterative algorithm, which relies on the preconditioned Douglas-Rachford splitting algorithm without using the partial inverse method. We carefully analyze the theoretical convergence of the proposed algorithms. Finally, in order to demonstrate the effectiveness and efficiency of these algorithms, we conduct numerical experiments on a novel image denoising model for salt-and-pepper noise removal. Numerical results show the good performance of the proposed algorithms.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/IPI.2021014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Preconditioned Douglas-Rachford type primal-dual method for solving composite monotone inclusion problems with applications
This paper is concerned with the monotone inclusion involving the sum of a finite number of maximally monotone operators and the parallel sum of two maximally monotone operators with bounded linear operators. To solve this monotone inclusion, we first transform it into the formulation of the sum of three maximally monotone operators in a proper product space. Then we derive two efficient iterative algorithms, which combine the partial inverse method with the preconditioned Douglas-Rachford splitting algorithm and the preconditioned proximal point algorithm. Furthermore, we develop an iterative algorithm, which relies on the preconditioned Douglas-Rachford splitting algorithm without using the partial inverse method. We carefully analyze the theoretical convergence of the proposed algorithms. Finally, in order to demonstrate the effectiveness and efficiency of these algorithms, we conduct numerical experiments on a novel image denoising model for salt-and-pepper noise removal. Numerical results show the good performance of the proposed algorithms.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.