神经管的发育依赖于脊索衍生的超音hedgehog基因释放到硬核组

N. Kahane, Chaya Kalcheim
{"title":"神经管的发育依赖于脊索衍生的超音hedgehog基因释放到硬核组","authors":"N. Kahane, Chaya Kalcheim","doi":"10.1101/639831","DOIUrl":null,"url":null,"abstract":"ABSTRACT Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors. Summary: Loss- and gain-of-function, and floor plate deletions, reveal that Shh that transits through the sclerotome is presented to the neuroepithelium from its basal aspect to affect motoneuron development.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome\",\"authors\":\"N. Kahane, Chaya Kalcheim\",\"doi\":\"10.1101/639831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors. Summary: Loss- and gain-of-function, and floor plate deletions, reveal that Shh that transits through the sclerotome is presented to the neuroepithelium from its basal aspect to affect motoneuron development.\",\"PeriodicalId\":77105,\"journal\":{\"name\":\"Development (Cambridge, England). Supplement\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development (Cambridge, England). Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/639831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development (Cambridge, England). Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/639831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在脊索和底板中产生的音猬(Shh)在神经和中胚层发育中都是必需的。为了到达肌瘤,Shh必须穿过硬膜层,而硬膜层Shh的减少会影响肌瘤的分化。通过研究Shh功能的丧失和获得,以及底板缺失,我们报告了硬化层Shh也是神经管发育所必需的。使用膜系刺猬相互作用蛋白或Patched1(而不是显性活性的patch)减少核组中Shh的数量,可以减少Olig2+运动神经元祖细胞和Hb9+运动神经元的数量,但对细胞存活或增殖没有显著影响。这些影响是中胚层Shh减少的具体和直接后果。此外,在基底而非根尖位置(即-à-vis神经管)移植脊索会深刻影响运动神经元的发育,这表明最初的配体呈现发生在与硬核-神经管界面相对应的上皮基底侧。总的来说,我们的研究结果表明,核组是Shh梯度的潜在位点,其协调中胚层和神经祖细胞的发育。摘要:功能丧失和功能获得,以及底板缺失,表明Shh通过硬膜组传递到神经上皮,从基底面影响运动神经元的发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome
ABSTRACT Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors. Summary: Loss- and gain-of-function, and floor plate deletions, reveal that Shh that transits through the sclerotome is presented to the neuroepithelium from its basal aspect to affect motoneuron development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信