Solovay关于FIM和BI的相对一致性证明

IF 0.6 3区 数学 Q2 LOGIC
J. Moschovakis
{"title":"Solovay关于FIM和BI的相对一致性证明","authors":"J. Moschovakis","doi":"10.1215/00294527-2021-0034","DOIUrl":null,"url":null,"abstract":"In 2002 Robert Solovay proved that a subsystem BI of classical second order arithmetic, with bar induction and arithmetical countable choice, can be negatively interpreted in the neutral subsystem BSK of Kleene's intuitionistic analysis FIM using Markov's Principle MP. Combining this result with Kleene's formalized recursive realizability, he established (in primitive recursive arithmetic PRA) that FIM + MP and BI have the same consistency strength. This historical note includes Solovay's original proof, with his permission, and the additional observation that Markov's Principle can be weakened to a double negation shift axiom consistent with Brouwer's creating subject counterexamples.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solovay's Relative Consistency Proof for FIM and BI\",\"authors\":\"J. Moschovakis\",\"doi\":\"10.1215/00294527-2021-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2002 Robert Solovay proved that a subsystem BI of classical second order arithmetic, with bar induction and arithmetical countable choice, can be negatively interpreted in the neutral subsystem BSK of Kleene's intuitionistic analysis FIM using Markov's Principle MP. Combining this result with Kleene's formalized recursive realizability, he established (in primitive recursive arithmetic PRA) that FIM + MP and BI have the same consistency strength. This historical note includes Solovay's original proof, with his permission, and the additional observation that Markov's Principle can be weakened to a double negation shift axiom consistent with Brouwer's creating subject counterexamples.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2021-0034\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2021-0034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

Robert Solovay(2002)利用Markov原理证明了具有条形归纳和算术可数选择的经典二阶算法的子系统BI可以用Kleene的直觉分析FIM的中性子系统BSK负解释。结合Kleene的形式化递归可实现性,他建立了(在原始递归算法PRA中)FIM + MP与BI具有相同的一致性强度。这篇历史笔记包括Solovay的原始证明,在他的允许下,以及马尔可夫原理可以被削弱为双重否定转移公理的附加观察,与browwer创造的主体反例相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solovay's Relative Consistency Proof for FIM and BI
In 2002 Robert Solovay proved that a subsystem BI of classical second order arithmetic, with bar induction and arithmetical countable choice, can be negatively interpreted in the neutral subsystem BSK of Kleene's intuitionistic analysis FIM using Markov's Principle MP. Combining this result with Kleene's formalized recursive realizability, he established (in primitive recursive arithmetic PRA) that FIM + MP and BI have the same consistency strength. This historical note includes Solovay's original proof, with his permission, and the additional observation that Markov's Principle can be weakened to a double negation shift axiom consistent with Brouwer's creating subject counterexamples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信