{"title":"代数与范畴论中的可分性","authors":"R. Wisbauer","doi":"10.1515/9783110542400-022","DOIUrl":null,"url":null,"abstract":"Separable field extensions are essentially known since the 19th century and their formal definition was given by Ernst Steinitz in 1910. In this survey we first recall this notion and equivalent characterisations. Then we outline how these were extended to more general structures, leading to separable algebras (over rings), Frobenius algebras, (non associative) Azumaya algebras, coalgebras, Hopf algebras, and eventually to separable functors. The purpose of the talk is to demonstrate that the development of new notions and definitions can lead to simpler formulations and to a deeper understanding of the original concepts. The formalism also applies to algebras and coalgebras over semirings and S-acts (transition systems).","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Separability in algebra and category theory\",\"authors\":\"R. Wisbauer\",\"doi\":\"10.1515/9783110542400-022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separable field extensions are essentially known since the 19th century and their formal definition was given by Ernst Steinitz in 1910. In this survey we first recall this notion and equivalent characterisations. Then we outline how these were extended to more general structures, leading to separable algebras (over rings), Frobenius algebras, (non associative) Azumaya algebras, coalgebras, Hopf algebras, and eventually to separable functors. The purpose of the talk is to demonstrate that the development of new notions and definitions can lead to simpler formulations and to a deeper understanding of the original concepts. The formalism also applies to algebras and coalgebras over semirings and S-acts (transition systems).\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110542400-022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110542400-022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Separable field extensions are essentially known since the 19th century and their formal definition was given by Ernst Steinitz in 1910. In this survey we first recall this notion and equivalent characterisations. Then we outline how these were extended to more general structures, leading to separable algebras (over rings), Frobenius algebras, (non associative) Azumaya algebras, coalgebras, Hopf algebras, and eventually to separable functors. The purpose of the talk is to demonstrate that the development of new notions and definitions can lead to simpler formulations and to a deeper understanding of the original concepts. The formalism also applies to algebras and coalgebras over semirings and S-acts (transition systems).