学习嵌入从自由文本分类笔记使用预训练的变压器模型

Émilien Arnaud, Mahmoud Elbattah, Maxime Gignon, Gilles Dequen
{"title":"学习嵌入从自由文本分类笔记使用预训练的变压器模型","authors":"Émilien Arnaud, Mahmoud Elbattah, Maxime Gignon, Gilles Dequen","doi":"10.5220/0011012800003123","DOIUrl":null,"url":null,"abstract":": The advent of transformer models has allowed for tremendous progress in the Natural Language Processing (NLP) domain. Pretrained transformers could successfully deliver the state-of-the-art performance in a myriad of NLP tasks. This study presents an application of transformers to learn contextual embeddings from free-text triage notes, widely recorded at the emergency department. A large-scale retrospective cohort of triage notes of more than 260K records was provided by the University Hospital of Amiens-Picardy in France. We utilize a set of Bidirectional Encoder Representations from Transformers (BERT) for the French language. The quality of embeddings is empirically examined based on a set of clustering models. In this regard, we provide a comparative analysis of popular models including CamemBERT , FlauBERT , and mBART . The study could be generally regarded as an addition to the ongoing contributions of applying the BERT approach in the healthcare context.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"61 1","pages":"835-841"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning Embeddings from Free-text Triage Notes using Pretrained Transformer Models\",\"authors\":\"Émilien Arnaud, Mahmoud Elbattah, Maxime Gignon, Gilles Dequen\",\"doi\":\"10.5220/0011012800003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The advent of transformer models has allowed for tremendous progress in the Natural Language Processing (NLP) domain. Pretrained transformers could successfully deliver the state-of-the-art performance in a myriad of NLP tasks. This study presents an application of transformers to learn contextual embeddings from free-text triage notes, widely recorded at the emergency department. A large-scale retrospective cohort of triage notes of more than 260K records was provided by the University Hospital of Amiens-Picardy in France. We utilize a set of Bidirectional Encoder Representations from Transformers (BERT) for the French language. The quality of embeddings is empirically examined based on a set of clustering models. In this regard, we provide a comparative analysis of popular models including CamemBERT , FlauBERT , and mBART . The study could be generally regarded as an addition to the ongoing contributions of applying the BERT approach in the healthcare context.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":\"61 1\",\"pages\":\"835-841\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011012800003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011012800003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

变压器模型的出现使得自然语言处理(NLP)领域取得了巨大的进步。预训练的变压器可以成功地在无数的NLP任务中提供最先进的性能。本研究介绍了转换器的应用,从自由文本分类笔记中学习上下文嵌入,广泛记录在急诊科。法国亚眠-皮卡第大学医院提供了260多万份分类记录的大规模回顾性队列研究。我们使用了一组来自变形金刚的双向编码器表示(BERT)来表示法语。基于一组聚类模型对嵌入的质量进行了实证检验。在这方面,我们对CamemBERT、福楼拜和mBART等流行模型进行了比较分析。该研究可以被普遍认为是对在医疗保健环境中应用BERT方法的持续贡献的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Embeddings from Free-text Triage Notes using Pretrained Transformer Models
: The advent of transformer models has allowed for tremendous progress in the Natural Language Processing (NLP) domain. Pretrained transformers could successfully deliver the state-of-the-art performance in a myriad of NLP tasks. This study presents an application of transformers to learn contextual embeddings from free-text triage notes, widely recorded at the emergency department. A large-scale retrospective cohort of triage notes of more than 260K records was provided by the University Hospital of Amiens-Picardy in France. We utilize a set of Bidirectional Encoder Representations from Transformers (BERT) for the French language. The quality of embeddings is empirically examined based on a set of clustering models. In this regard, we provide a comparative analysis of popular models including CamemBERT , FlauBERT , and mBART . The study could be generally regarded as an addition to the ongoing contributions of applying the BERT approach in the healthcare context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信