{"title":"指数丢番图方程mx+(m+1)y=(1+m+m2)z","authors":"M. Alan","doi":"10.2478/auom-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract Let m > 1 be a positive integer. We show that the exponential Diophantine equation mx + (m + 1)y = (1 + m + m2)z has only the positive integer solution (x, y, z) = (2, 1, 1) when m ≥ 2.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"14 1","pages":"23 - 32"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exponential Diophantine equation mx+(m+1)y=(1+m+m2)z\",\"authors\":\"M. Alan\",\"doi\":\"10.2478/auom-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let m > 1 be a positive integer. We show that the exponential Diophantine equation mx + (m + 1)y = (1 + m + m2)z has only the positive integer solution (x, y, z) = (2, 1, 1) when m ≥ 2.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"14 1\",\"pages\":\"23 - 32\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设m >1为正整数。我们证明了指数丢芬图方程mx + (m + 1)y = (1 + m + m2)z在m≥2时只有正整数解(x, y, z) =(2,1,1)。
On the exponential Diophantine equation mx+(m+1)y=(1+m+m2)z
Abstract Let m > 1 be a positive integer. We show that the exponential Diophantine equation mx + (m + 1)y = (1 + m + m2)z has only the positive integer solution (x, y, z) = (2, 1, 1) when m ≥ 2.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.