点云分割使用梯度矢量流蛇

S. Liu, Yingsong Ye
{"title":"点云分割使用梯度矢量流蛇","authors":"S. Liu, Yingsong Ye","doi":"10.1109/ICIST.2011.5765166","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for extracting point cloud of useful main surface from 3D point cloud of an existing product or part. The 3D point cloud is sliced into 2D point cloud at different slices. For each slice, gradient vector flow (GVF) is generated. An active contour or snake is applied to capture the point cloud belonging to main surface. Points belonging to mini-structures or mini-features are repaired. Experimental results demonstrate the robustness and the effectiveness of the proposed algorithm.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"695 1","pages":"1114-1118"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Point cloud segmentation using gradient vector flow snake\",\"authors\":\"S. Liu, Yingsong Ye\",\"doi\":\"10.1109/ICIST.2011.5765166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for extracting point cloud of useful main surface from 3D point cloud of an existing product or part. The 3D point cloud is sliced into 2D point cloud at different slices. For each slice, gradient vector flow (GVF) is generated. An active contour or snake is applied to capture the point cloud belonging to main surface. Points belonging to mini-structures or mini-features are repaired. Experimental results demonstrate the robustness and the effectiveness of the proposed algorithm.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"695 1\",\"pages\":\"1114-1118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种从现有产品或零件的三维点云中提取有用主表面点云的新方法。将三维点云在不同的切片上分割成二维点云。对于每个切片,生成梯度矢量流(GVF)。利用活动轮廓线或蛇形来捕获主曲面的点云。修复属于微型结构或微型特征的点。实验结果证明了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point cloud segmentation using gradient vector flow snake
This paper presents a new method for extracting point cloud of useful main surface from 3D point cloud of an existing product or part. The 3D point cloud is sliced into 2D point cloud at different slices. For each slice, gradient vector flow (GVF) is generated. An active contour or snake is applied to capture the point cloud belonging to main surface. Points belonging to mini-structures or mini-features are repaired. Experimental results demonstrate the robustness and the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信