{"title":"利用遥感技术对蝗虫入侵和减灾的影响:以巴基斯坦信德省北部为例","authors":"Muhammad Nasar Ahmad, Z. Shao, O. Altan","doi":"10.14358/pers.21-00025r2","DOIUrl":null,"url":null,"abstract":"This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data\n processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation\n on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly\n decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion\n of food chain and gross domestic product for Sindh, Pakistan.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Locust Invasion and Mitigation Using Remote Sensing Techniques: A Case Study of North Sindh Pakistan\",\"authors\":\"Muhammad Nasar Ahmad, Z. Shao, O. Altan\",\"doi\":\"10.14358/pers.21-00025r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data\\n processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation\\n on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly\\n decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion\\n of food chain and gross domestic product for Sindh, Pakistan.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.21-00025r2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.21-00025r2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Effect of Locust Invasion and Mitigation Using Remote Sensing Techniques: A Case Study of North Sindh Pakistan
This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data
processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation
on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly
decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion
of food chain and gross domestic product for Sindh, Pakistan.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.