矩形矩阵广义MPCEP逆的刻画

Jiaxuan Yao, Xiaoji Liu, Hongwei Jin
{"title":"矩形矩阵广义MPCEP逆的刻画","authors":"Jiaxuan Yao, Xiaoji Liu, Hongwei Jin","doi":"10.1155/2023/6235312","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new generalized inverse, called the G-MPCEP inverse of a complex matrix. We investigate some characterizations, representations, and properties of this new inverse. Cramer’s rule for the solution of a singular equation \n \n A\n x\n =\n B\n \n is also presented. Moreover, the determinantal representations for the G-MPCEP inverse are studied. Finally, the G-MPCEP inverse being used in solving appropriate systems of linear equations is established.","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"113 1","pages":"6235312:1-6235312:10"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the Generalized MPCEP Inverse of Rectangular Matrices\",\"authors\":\"Jiaxuan Yao, Xiaoji Liu, Hongwei Jin\",\"doi\":\"10.1155/2023/6235312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new generalized inverse, called the G-MPCEP inverse of a complex matrix. We investigate some characterizations, representations, and properties of this new inverse. Cramer’s rule for the solution of a singular equation \\n \\n A\\n x\\n =\\n B\\n \\n is also presented. Moreover, the determinantal representations for the G-MPCEP inverse are studied. Finally, the G-MPCEP inverse being used in solving appropriate systems of linear equations is established.\",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"113 1\",\"pages\":\"6235312:1-6235312:10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6235312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6235312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种新的广义逆,称为复矩阵的G-MPCEP逆。我们研究了这个新逆的一些表征、表示和性质。给出了求解奇异方程a x = B的Cramer规则。此外,还研究了G-MPCEP逆的行列式表示。最后,建立了G-MPCEP逆函数用于求解合适的线性方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of the Generalized MPCEP Inverse of Rectangular Matrices
In this paper, we introduce a new generalized inverse, called the G-MPCEP inverse of a complex matrix. We investigate some characterizations, representations, and properties of this new inverse. Cramer’s rule for the solution of a singular equation A x = B is also presented. Moreover, the determinantal representations for the G-MPCEP inverse are studied. Finally, the G-MPCEP inverse being used in solving appropriate systems of linear equations is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信