乘法误差模型:20年过去了

IF 2 Q2 ECONOMICS
Fabrizio Cipollini , Giampiero M. Gallo
{"title":"乘法误差模型:20年过去了","authors":"Fabrizio Cipollini ,&nbsp;Giampiero M. Gallo","doi":"10.1016/j.ecosta.2022.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 209-229"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Error Models: 20 years on\",\"authors\":\"Fabrizio Cipollini ,&nbsp;Giampiero M. Gallo\",\"doi\":\"10.1016/j.ecosta.2022.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.</div></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"33 \",\"pages\":\"Pages 209-229\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306222000740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative Error Models: 20 years on
The issue of combining low– and high–frequency components of volatility is addressed within the class of Multiplicative Error Models both in the univariate and multivariate cases. Inference based on the Generalized Method of Moments is suggested, which has the advantage of not requiring a parametric choice for the error distribution. The application relates to several volatility market indices (US, Europe and East Asia, with interdependencies in the short–run components of absolute returns, realized kernel volatility and option–based implied volatility indices): a set of diagnostic tools is used to evaluate the evidence of a relevant low–frequency component across markets, also from a forecasting comparison perspective. The results show that the slow–moving component in the dynamics achieves a better fit to the data and allows for an interpretation of what moves the local average level of volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信