IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jagrati Singh, Anil Kumar Singh
{"title":"Semrank","authors":"Jagrati Singh, Anil Kumar Singh","doi":"10.4018/ijcini.20210701.oa6","DOIUrl":null,"url":null,"abstract":"Popular real-world events often create huge traffic on Twitter including real-time updates of important moments, personal comments, and so on while the event is happening. Most of the users are interested to read the important tweets that possibly include important moments of that event. However, extracting the relevant tweets of any event is a challenging task due to the endless stream of noisy tweets and vocabulary variation problem of social media content. To handle these challenges, the authors introduce a new approach for computing the relative tweet importance based on the concept of the Pagerank algorithm where adjacency matrix of the graph representation of tweets contains semantic similarity matrix based on the word mover's distance measure utilizing Word2Vec word embedding model. The results show that top-ranked tweets generated by the proposed approach are more concise and news-worthy than baseline approaches.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"183 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20210701.oa6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

现实世界的热门事件经常在Twitter上创造巨大的流量,包括事件发生时重要时刻的实时更新、个人评论等。大多数用户都有兴趣阅读可能包含该事件重要时刻的重要推文。然而,由于社交媒体内容的词汇变化问题和无休止的噪声推文,提取任何事件的相关推文都是一项具有挑战性的任务。为了应对这些挑战,作者引入了一种基于Pagerank算法概念的计算相对推文重要性的新方法,其中推文图表示的邻接矩阵包含基于Word2Vec词嵌入模型的词移动器距离度量的语义相似矩阵。结果表明,该方法生成的排名靠前的推文比基线方法更简洁,更有新闻价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semrank
Popular real-world events often create huge traffic on Twitter including real-time updates of important moments, personal comments, and so on while the event is happening. Most of the users are interested to read the important tweets that possibly include important moments of that event. However, extracting the relevant tweets of any event is a challenging task due to the endless stream of noisy tweets and vocabulary variation problem of social media content. To handle these challenges, the authors introduce a new approach for computing the relative tweet importance based on the concept of the Pagerank algorithm where adjacency matrix of the graph representation of tweets contains semantic similarity matrix based on the word mover's distance measure utilizing Word2Vec word embedding model. The results show that top-ranked tweets generated by the proposed approach are more concise and news-worthy than baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
16
期刊介绍: The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信