{"title":"铂电极上乙炔电催化合成草酸的电化学行为","authors":"Xiuli Song, Wenyan Dong, Zhenhai Liang","doi":"10.1515/jaots-2016-0108","DOIUrl":null,"url":null,"abstract":"Abstract Electrocatalytic synthesis of oxalic acid from acetylene has been achieved at Pt electrode. The electrocatalytically synthesized oxalic acid has been characterized by FTIR (Fourier transform infrared spectroscopy) and UV-Vis (UV-Vis spectrophotometry). Influence of electrode material, Na2SO4 concentration, acetone volume fraction, temperature and scan rate have been investigated by CV (cyclic voltammetry). The analysis results show that oxalic acid has been successfully electrocatalytically synthesized from acetylene at the very stable Pt electrode under ambient temperature and pressure, the supporting electrolyte is Na2SO4 (0.5 M) with acetone (2% by volume), the reaction time is 8 h and the conversion efficiency is larger than 20%. The Ea (apparent activation energy) of electrocatalytic oxidation reaction of acetylene at the Pt electrode is 14.42 kJ·mol-1, the electrocatalytic oxidation process of acetylene is irreversible and under adsorption control. In addition, the reaction mechanism of the electrocatalytic oxidation process of acetylene to oxalic acid has been envisaged successfully based on the principle of adsorption and desorption at Pt electrode surface. It exhibits the excellent electrocatalytic performance of Pt in the electrocatalytic oxidation process of acetylene and heralds more broad potential application prospect of acetylene in chemical industry field.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"95 1","pages":"66 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrochemical Behavior of Electrocatalytic Synthesis of Oxalic Acid from Acetylene at Pt Electrode\",\"authors\":\"Xiuli Song, Wenyan Dong, Zhenhai Liang\",\"doi\":\"10.1515/jaots-2016-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Electrocatalytic synthesis of oxalic acid from acetylene has been achieved at Pt electrode. The electrocatalytically synthesized oxalic acid has been characterized by FTIR (Fourier transform infrared spectroscopy) and UV-Vis (UV-Vis spectrophotometry). Influence of electrode material, Na2SO4 concentration, acetone volume fraction, temperature and scan rate have been investigated by CV (cyclic voltammetry). The analysis results show that oxalic acid has been successfully electrocatalytically synthesized from acetylene at the very stable Pt electrode under ambient temperature and pressure, the supporting electrolyte is Na2SO4 (0.5 M) with acetone (2% by volume), the reaction time is 8 h and the conversion efficiency is larger than 20%. The Ea (apparent activation energy) of electrocatalytic oxidation reaction of acetylene at the Pt electrode is 14.42 kJ·mol-1, the electrocatalytic oxidation process of acetylene is irreversible and under adsorption control. In addition, the reaction mechanism of the electrocatalytic oxidation process of acetylene to oxalic acid has been envisaged successfully based on the principle of adsorption and desorption at Pt electrode surface. It exhibits the excellent electrocatalytic performance of Pt in the electrocatalytic oxidation process of acetylene and heralds more broad potential application prospect of acetylene in chemical industry field.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"95 1\",\"pages\":\"66 - 72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Electrochemical Behavior of Electrocatalytic Synthesis of Oxalic Acid from Acetylene at Pt Electrode
Abstract Electrocatalytic synthesis of oxalic acid from acetylene has been achieved at Pt electrode. The electrocatalytically synthesized oxalic acid has been characterized by FTIR (Fourier transform infrared spectroscopy) and UV-Vis (UV-Vis spectrophotometry). Influence of electrode material, Na2SO4 concentration, acetone volume fraction, temperature and scan rate have been investigated by CV (cyclic voltammetry). The analysis results show that oxalic acid has been successfully electrocatalytically synthesized from acetylene at the very stable Pt electrode under ambient temperature and pressure, the supporting electrolyte is Na2SO4 (0.5 M) with acetone (2% by volume), the reaction time is 8 h and the conversion efficiency is larger than 20%. The Ea (apparent activation energy) of electrocatalytic oxidation reaction of acetylene at the Pt electrode is 14.42 kJ·mol-1, the electrocatalytic oxidation process of acetylene is irreversible and under adsorption control. In addition, the reaction mechanism of the electrocatalytic oxidation process of acetylene to oxalic acid has been envisaged successfully based on the principle of adsorption and desorption at Pt electrode surface. It exhibits the excellent electrocatalytic performance of Pt in the electrocatalytic oxidation process of acetylene and heralds more broad potential application prospect of acetylene in chemical industry field.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs