基于异构计算的输变电实时现场巡检系统

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaohong Yan, Zhigang Zhao, Yongqiang Liu
{"title":"基于异构计算的输变电实时现场巡检系统","authors":"Xiaohong Yan, Zhigang Zhao, Yongqiang Liu","doi":"10.3233/JHS-210662","DOIUrl":null,"url":null,"abstract":"As the need of power supply is tremendously increasing in modern society, the stableness and reliability of the power delivery system are the two essential factors that ensure the power supply safety. With the quick expansion of electricity infrastructures, the failures of power transmission system are becoming more frequent, leading to economic loss and high risk of maintenance work under hazardous conditions. The existing automatic power line inspection utilizes advanced convolutional neural network (CNN) to improve the inspection efficiency, emerging as one promising solution. But the needed computational complexity is high since CNN inference demands large amount of multiplication-and-accumulation operations. In this paper, we alleviate this problem by utilizing the heterogeneous computing techniques to design a real-time on-site inspection system. Firstly, the required computational complexity of CNN inference is reduced using FFT-based convolution algorithms, speeding up the inference. Then we utilize the region of interest (ROI) extrapolation to predict the object detection bounding boxes without CNN inference, thus saving computing power. Finally, a heterogeneous computing architecture is presented to accommodate the requirements of proposed algorithms. According to the experiment results, the proposed design significantly improves the frame rate of CNN-based inspection visual system applied to power line inspection. The processing frame rate is also drastically improved. Moreover, the precision loss is negligible which means our proposed schemes are applicable for real application scenarios.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":"93 1","pages":"215-224"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time on-site inspection system for power transmission based on heterogeneous computing\",\"authors\":\"Xiaohong Yan, Zhigang Zhao, Yongqiang Liu\",\"doi\":\"10.3233/JHS-210662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the need of power supply is tremendously increasing in modern society, the stableness and reliability of the power delivery system are the two essential factors that ensure the power supply safety. With the quick expansion of electricity infrastructures, the failures of power transmission system are becoming more frequent, leading to economic loss and high risk of maintenance work under hazardous conditions. The existing automatic power line inspection utilizes advanced convolutional neural network (CNN) to improve the inspection efficiency, emerging as one promising solution. But the needed computational complexity is high since CNN inference demands large amount of multiplication-and-accumulation operations. In this paper, we alleviate this problem by utilizing the heterogeneous computing techniques to design a real-time on-site inspection system. Firstly, the required computational complexity of CNN inference is reduced using FFT-based convolution algorithms, speeding up the inference. Then we utilize the region of interest (ROI) extrapolation to predict the object detection bounding boxes without CNN inference, thus saving computing power. Finally, a heterogeneous computing architecture is presented to accommodate the requirements of proposed algorithms. According to the experiment results, the proposed design significantly improves the frame rate of CNN-based inspection visual system applied to power line inspection. The processing frame rate is also drastically improved. Moreover, the precision loss is negligible which means our proposed schemes are applicable for real application scenarios.\",\"PeriodicalId\":54809,\"journal\":{\"name\":\"Journal of High Speed Networks\",\"volume\":\"93 1\",\"pages\":\"215-224\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Speed Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/JHS-210662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JHS-210662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

随着现代社会对电力需求的急剧增加,供电系统的稳定和可靠是保证供电安全的两个必不可少的因素。随着电力基础设施的快速扩张,输电系统的故障日益频繁,不仅造成了经济损失,而且在危险条件下维护工作的风险也很高。现有的电力线自动检测采用先进的卷积神经网络(CNN)来提高检测效率,是一种很有前途的解决方案。但由于CNN推理需要大量的乘法和累加运算,因此所需的计算复杂度很高。本文利用异构计算技术设计了一个实时现场检测系统,解决了这一问题。首先,利用基于fft的卷积算法降低CNN推理所需的计算复杂度,加快推理速度;然后,我们利用感兴趣区域(ROI)外推来预测目标检测边界框,而不需要CNN推理,从而节省了计算能力。最后,提出了一种异构计算体系结构,以适应所提出算法的要求。实验结果表明,该设计显著提高了基于cnn的检测视觉系统在电力线检测中的帧率。处理帧率也大大提高。此外,该方法的精度损失可以忽略不计,适用于实际应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time on-site inspection system for power transmission based on heterogeneous computing
As the need of power supply is tremendously increasing in modern society, the stableness and reliability of the power delivery system are the two essential factors that ensure the power supply safety. With the quick expansion of electricity infrastructures, the failures of power transmission system are becoming more frequent, leading to economic loss and high risk of maintenance work under hazardous conditions. The existing automatic power line inspection utilizes advanced convolutional neural network (CNN) to improve the inspection efficiency, emerging as one promising solution. But the needed computational complexity is high since CNN inference demands large amount of multiplication-and-accumulation operations. In this paper, we alleviate this problem by utilizing the heterogeneous computing techniques to design a real-time on-site inspection system. Firstly, the required computational complexity of CNN inference is reduced using FFT-based convolution algorithms, speeding up the inference. Then we utilize the region of interest (ROI) extrapolation to predict the object detection bounding boxes without CNN inference, thus saving computing power. Finally, a heterogeneous computing architecture is presented to accommodate the requirements of proposed algorithms. According to the experiment results, the proposed design significantly improves the frame rate of CNN-based inspection visual system applied to power line inspection. The processing frame rate is also drastically improved. Moreover, the precision loss is negligible which means our proposed schemes are applicable for real application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Speed Networks
Journal of High Speed Networks Computer Science-Computer Networks and Communications
CiteScore
1.80
自引率
11.10%
发文量
26
期刊介绍: The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge. The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity. The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信