{"title":"改进对不平衡数据集的日志预测:一个开源Java项目的案例研究","authors":"Sangeeta Lal, Neetu Sardana, A. Sureka","doi":"10.4018/IJOSSP.2016040103","DOIUrl":null,"url":null,"abstract":"Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in improving several steps of OSS development, including logging. Several recent studies propose machine-learning models to predict logged code construct. The prediction performances of these models are limited due to the class-imbalance problem since the number of logged code constructs is small as compared to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks, and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"72 1","pages":"43-71"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving Logging Prediction on Imbalanced Datasets: A Case Study on Open Source Java Projects\",\"authors\":\"Sangeeta Lal, Neetu Sardana, A. Sureka\",\"doi\":\"10.4018/IJOSSP.2016040103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in improving several steps of OSS development, including logging. Several recent studies propose machine-learning models to predict logged code construct. The prediction performances of these models are limited due to the class-imbalance problem since the number of logged code constructs is small as compared to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks, and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"72 1\",\"pages\":\"43-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2016040103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2016040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Improving Logging Prediction on Imbalanced Datasets: A Case Study on Open Source Java Projects
Logging is an important yet tough decision for OSS developers. Machine-learning models are useful in improving several steps of OSS development, including logging. Several recent studies propose machine-learning models to predict logged code construct. The prediction performances of these models are limited due to the class-imbalance problem since the number of logged code constructs is small as compared to non-logged code constructs. No previous study analyzes the class-imbalance problem for logged code construct prediction. The authors first analyze the performances of J48, RF, and SVM classifiers for catch-blocks and if-blocks logged code constructs prediction on imbalanced datasets. Second, the authors propose LogIm, an ensemble and threshold-based machine-learning model. Third, the authors evaluate the performance of LogIm on three open-source projects. On average, LogIm model improves the performance of baseline classifiers, J48, RF, and SVM, by 7.38%, 9.24%, and 4.6% for catch-blocks, and 12.11%, 14.95%, and 19.13% for if-blocks logging prediction.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.