基于导航学习的自主水下航行器测量轨迹分类

M. D. L. Alvarez, H. Hastie, D. Lane
{"title":"基于导航学习的自主水下航行器测量轨迹分类","authors":"M. D. L. Alvarez, H. Hastie, D. Lane","doi":"10.1109/MLSP.2017.8168137","DOIUrl":null,"url":null,"abstract":"Timeseries sensor data processing is indispensable for system monitoring. Working with autonomous vehicles requires mechanisms that provide insightful information about the status of a mission. In a setting where time and resources are limited, trajectory classification plays a vital role in mission monitoring and failure detection. In this context, we use navigational data to interpret trajectory patterns and classify them. We implement Long Short-Term Memory (LSTM) based Recursive Neural Networks (RNN) that learn the most commonly used survey trajectory patterns from surveys executed by two types of Autonomous Underwater Vehicles (AUV). We compare the performance of our network against baseline machine learning methods.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"43 4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Navigation-Based learning for survey trajectory classification in autonomous underwater vehicles\",\"authors\":\"M. D. L. Alvarez, H. Hastie, D. Lane\",\"doi\":\"10.1109/MLSP.2017.8168137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timeseries sensor data processing is indispensable for system monitoring. Working with autonomous vehicles requires mechanisms that provide insightful information about the status of a mission. In a setting where time and resources are limited, trajectory classification plays a vital role in mission monitoring and failure detection. In this context, we use navigational data to interpret trajectory patterns and classify them. We implement Long Short-Term Memory (LSTM) based Recursive Neural Networks (RNN) that learn the most commonly used survey trajectory patterns from surveys executed by two types of Autonomous Underwater Vehicles (AUV). We compare the performance of our network against baseline machine learning methods.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"43 4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

时间序列传感器数据处理是系统监测必不可少的环节。与自动驾驶汽车合作需要提供有关任务状态的深刻信息的机制。在时间和资源有限的情况下,弹道分类在任务监测和故障检测中起着至关重要的作用。在这种情况下,我们使用导航数据来解释轨迹模式并对它们进行分类。我们实现了基于长短期记忆(LSTM)的递归神经网络(RNN),该网络从两种类型的自主水下航行器(AUV)执行的调查中学习最常用的调查轨迹模式。我们将网络的性能与基准机器学习方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigation-Based learning for survey trajectory classification in autonomous underwater vehicles
Timeseries sensor data processing is indispensable for system monitoring. Working with autonomous vehicles requires mechanisms that provide insightful information about the status of a mission. In a setting where time and resources are limited, trajectory classification plays a vital role in mission monitoring and failure detection. In this context, we use navigational data to interpret trajectory patterns and classify them. We implement Long Short-Term Memory (LSTM) based Recursive Neural Networks (RNN) that learn the most commonly used survey trajectory patterns from surveys executed by two types of Autonomous Underwater Vehicles (AUV). We compare the performance of our network against baseline machine learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信