RNS算法体系结构的矩阵混合基数转换

N. Yassine
{"title":"RNS算法体系结构的矩阵混合基数转换","authors":"N. Yassine","doi":"10.1109/MWSCAS.1991.252046","DOIUrl":null,"url":null,"abstract":"The author describes an improved technique for transforming a residue number into a mixed-radix weighted representation using matrix techniques. The mixed-radix digits of the proposed conversion procedure are factorized into a product of two terms each. One term is invariant and predetermined, while the other is variable and depends on the particular residue number being converted. In comparison with previous conversion techniques, the proposed conversion method achieves a considerable reduction in the number of arithmetic multiplications needed during the conversion process.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"206 1","pages":"273-278 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Matrix mixed-radix conversion for RNS arithmetic architectures\",\"authors\":\"N. Yassine\",\"doi\":\"10.1109/MWSCAS.1991.252046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author describes an improved technique for transforming a residue number into a mixed-radix weighted representation using matrix techniques. The mixed-radix digits of the proposed conversion procedure are factorized into a product of two terms each. One term is invariant and predetermined, while the other is variable and depends on the particular residue number being converted. In comparison with previous conversion techniques, the proposed conversion method achieves a considerable reduction in the number of arithmetic multiplications needed during the conversion process.<<ETX>>\",\"PeriodicalId\":6453,\"journal\":{\"name\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"volume\":\"206 1\",\"pages\":\"273-278 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1991.252046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

作者描述了一种利用矩阵技术将残数转换为混合基加权表示的改进技术。所提出的转换过程的混合基数数字被分解成每两项的乘积。一项是不变的和预定的,而另一项是可变的,取决于被转换的特定剩余数。与以前的转换技术相比,所提出的转换方法在转换过程中大大减少了所需的算术乘法次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix mixed-radix conversion for RNS arithmetic architectures
The author describes an improved technique for transforming a residue number into a mixed-radix weighted representation using matrix techniques. The mixed-radix digits of the proposed conversion procedure are factorized into a product of two terms each. One term is invariant and predetermined, while the other is variable and depends on the particular residue number being converted. In comparison with previous conversion techniques, the proposed conversion method achieves a considerable reduction in the number of arithmetic multiplications needed during the conversion process.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信