{"title":"大上同调类的Mabuchi几何","authors":"Mingchen Xia","doi":"10.1515/crelle-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\\mathcal{E}^{p}(X,\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mabuchi geometry of big cohomology classes\",\"authors\":\"Mingchen Xia\",\"doi\":\"10.1515/crelle-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\\\\mathcal{E}^{p}(X,\\\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设X是一个紧的Kähler流形。固定一个具有光滑表示θ的大{(1,1)(1,1)}-上同调类α。我们研究了每一个p≥1 p {\geq}{ 1的有限能量Kähler位能}{{的空间(}}{p}{²(X, θ) }{\mathcal{E}}{ ^p(X, }{}{\theta}{)}。我们{在不使用Finsler几何和不{求解}}monge - ampement - re型方程的情况下定义了度规d p d_p。此构造泛化了{为示例类定义的通常的{pd_p}} -度量。
Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\mathcal{E}^{p}(X,\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.