大上同调类的Mabuchi几何

IF 1.2 1区 数学 Q1 MATHEMATICS
Mingchen Xia
{"title":"大上同调类的Mabuchi几何","authors":"Mingchen Xia","doi":"10.1515/crelle-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ⁢ ( X , θ ) {\\mathcal{E}^{p}(X,\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"92 1","pages":"261 - 292"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mabuchi geometry of big cohomology classes\",\"authors\":\"Mingchen Xia\",\"doi\":\"10.1515/crelle-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ⁢ ( X , θ ) {\\\\mathcal{E}^{p}(X,\\\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"92 1\",\"pages\":\"261 - 292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设X是一个紧的Kähler流形。固定一个具有光滑表示θ的大{(1,1)(1,1)}-上同调类α。我们研究了每一个p≥1 p {\geq}{ 1的有限能量Kähler位能}{{的空间(}}{p}{²(X, θ) }{\mathcal{E}}{ ^p(X, }{}{\theta}{)}。我们{在不使用Finsler几何和不{求解}}monge - ampement - re型方程的情况下定义了度规d p d_p。此构造泛化了{为示例类定义的通常的{pd_p}} -度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mabuchi geometry of big cohomology classes
Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ⁢ ( X , θ ) {\mathcal{E}^{p}(X,\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信