{"title":"大上同调类的Mabuchi几何","authors":"Mingchen Xia","doi":"10.1515/crelle-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\\mathcal{E}^{p}(X,\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"92 1","pages":"261 - 292"},"PeriodicalIF":1.2000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mabuchi geometry of big cohomology classes\",\"authors\":\"Mingchen Xia\",\"doi\":\"10.1515/crelle-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\\\\mathcal{E}^{p}(X,\\\\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\\\\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"92 1\",\"pages\":\"261 - 292\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X是一个紧的Kähler流形。固定一个具有光滑表示θ的大{(1,1)(1,1)}-上同调类α。我们研究了每一个p≥1 p {\geq}{ 1的有限能量Kähler位能}{{的空间(}}{p}{²(X, θ) }{\mathcal{E}}{ ^p(X, }{}{\theta}{)}。我们{在不使用Finsler几何和不{求解}}monge - ampement - re型方程的情况下定义了度规d p d_p。此构造泛化了{为示例类定义的通常的{pd_p}} -度量。
Abstract Let X be a compact Kähler manifold. Fix a big ( 1 , 1 ) {(1,1)} -cohomology class α with smooth representative θ. We study the spaces ℰ p ( X , θ ) {\mathcal{E}^{p}(X,\theta)} of finite energy Kähler potentials for each p ≥ 1 {p\geq 1} . We define a metric d p {d_{p}} without using the Finsler geometry nor solving Monge–Ampère-type equations. This construction generalizes the usual d p {d_{p}} -metric defined for an ample class.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.