中性粒细胞凋亡在钒诱导小鼠肺部炎症中的作用。

Liying Wang, D. Medan, R. Mercer, Xianglin Shi, Chuanshu Huang, V. Castranova, M. Ding, Y. Rojanasakul
{"title":"中性粒细胞凋亡在钒诱导小鼠肺部炎症中的作用。","authors":"Liying Wang, D. Medan, R. Mercer, Xianglin Shi, Chuanshu Huang, V. Castranova, M. Ding, Y. Rojanasakul","doi":"10.1615/JENVIRONPATHOLTOXICOLONCOL.V21.I4.30","DOIUrl":null,"url":null,"abstract":"Pulmonary exposure to airborne vanadium and vanadium-containing compounds is associated with acute pulmonary inflammation, characterized by a rapid influx of neutrophilic polymorphonuclear leukocytes with a peak response at 6 hours and resolution by 3 days. We hypothesized that neutrophil apoptosis is involved in the resolution of vanadium-induced lung inflammation. To test this hypothesis, mice were exposed to inspired vanadium or saline control and the bronchoalveolar lavage (BAL) cells were examined at various times for apoptosis using terminal deoxyribonucleotidyl transferase-mediated nick end labeling (TUNEL). Control mice showed only resident alveolar macrophages in the BAL with no evidence of apoptosis. In contrast, vanadium-treated mice showed clear apoptosis of BAL cells, which were predominantly neutrophils. The number of apoptotic cells gradually increased and reached a maximal level by 24 hours with subsequent decline. After 24 hours, when the vanadium-induced lung inflammation was in the resolution phase, we observed an increased number of alveolar macrophages in BAL and the engulfment of apoptotic bodies by these macrophages. At 72 hours, the total number of neutrophils in BAL fell to the baseline level, and the number of apoptotic cells was reduced. Clearance of the apoptotic product was demonstrated by the presence of apoptotic bodies in the cytoplasm of alveolar macrophages. We conclude that apoptosis of neutrophils and clearance by alveolar macrophages are important mechanisms in the resolution of vanadium-induced lung inflammation.","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Role of neutrophil apoptosis in vanadium-induced pulmonary inflammation in mice.\",\"authors\":\"Liying Wang, D. Medan, R. Mercer, Xianglin Shi, Chuanshu Huang, V. Castranova, M. Ding, Y. Rojanasakul\",\"doi\":\"10.1615/JENVIRONPATHOLTOXICOLONCOL.V21.I4.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulmonary exposure to airborne vanadium and vanadium-containing compounds is associated with acute pulmonary inflammation, characterized by a rapid influx of neutrophilic polymorphonuclear leukocytes with a peak response at 6 hours and resolution by 3 days. We hypothesized that neutrophil apoptosis is involved in the resolution of vanadium-induced lung inflammation. To test this hypothesis, mice were exposed to inspired vanadium or saline control and the bronchoalveolar lavage (BAL) cells were examined at various times for apoptosis using terminal deoxyribonucleotidyl transferase-mediated nick end labeling (TUNEL). Control mice showed only resident alveolar macrophages in the BAL with no evidence of apoptosis. In contrast, vanadium-treated mice showed clear apoptosis of BAL cells, which were predominantly neutrophils. The number of apoptotic cells gradually increased and reached a maximal level by 24 hours with subsequent decline. After 24 hours, when the vanadium-induced lung inflammation was in the resolution phase, we observed an increased number of alveolar macrophages in BAL and the engulfment of apoptotic bodies by these macrophages. At 72 hours, the total number of neutrophils in BAL fell to the baseline level, and the number of apoptotic cells was reduced. Clearance of the apoptotic product was demonstrated by the presence of apoptotic bodies in the cytoplasm of alveolar macrophages. We conclude that apoptosis of neutrophils and clearance by alveolar macrophages are important mechanisms in the resolution of vanadium-induced lung inflammation.\",\"PeriodicalId\":94332,\"journal\":{\"name\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.V21.I4.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JENVIRONPATHOLTOXICOLONCOL.V21.I4.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

肺暴露于空气中的钒和含钒化合物与急性肺部炎症有关,其特征是中性粒细胞多形核白细胞快速涌入,6小时达到峰值,3天消退。我们假设中性粒细胞凋亡参与了钒诱导的肺部炎症的消退。为了验证这一假设,将小鼠暴露于激发钒或生理盐水对照中,并使用末端脱氧核糖核苷酸转移酶介导的缺口末端标记(TUNEL)在不同时间检测支气管肺泡灌洗(BAL)细胞的凋亡情况。对照组小鼠BAL中只有常驻肺泡巨噬细胞,无凋亡迹象。相反,钒处理小鼠BAL细胞明显凋亡,以中性粒细胞为主。凋亡细胞数量逐渐增加,在24小时达到最大,随后下降。24小时后,当钒诱导的肺部炎症处于消退期时,我们观察到BAL中肺泡巨噬细胞数量增加,这些巨噬细胞吞噬凋亡小体。72h时,BAL中中性粒细胞总数降至基线水平,凋亡细胞数量减少。肺泡巨噬细胞细胞质中凋亡小体的存在证明了凋亡产物的清除。我们认为中性粒细胞的凋亡和肺泡巨噬细胞的清除是解决钒诱导的肺部炎症的重要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of neutrophil apoptosis in vanadium-induced pulmonary inflammation in mice.
Pulmonary exposure to airborne vanadium and vanadium-containing compounds is associated with acute pulmonary inflammation, characterized by a rapid influx of neutrophilic polymorphonuclear leukocytes with a peak response at 6 hours and resolution by 3 days. We hypothesized that neutrophil apoptosis is involved in the resolution of vanadium-induced lung inflammation. To test this hypothesis, mice were exposed to inspired vanadium or saline control and the bronchoalveolar lavage (BAL) cells were examined at various times for apoptosis using terminal deoxyribonucleotidyl transferase-mediated nick end labeling (TUNEL). Control mice showed only resident alveolar macrophages in the BAL with no evidence of apoptosis. In contrast, vanadium-treated mice showed clear apoptosis of BAL cells, which were predominantly neutrophils. The number of apoptotic cells gradually increased and reached a maximal level by 24 hours with subsequent decline. After 24 hours, when the vanadium-induced lung inflammation was in the resolution phase, we observed an increased number of alveolar macrophages in BAL and the engulfment of apoptotic bodies by these macrophages. At 72 hours, the total number of neutrophils in BAL fell to the baseline level, and the number of apoptotic cells was reduced. Clearance of the apoptotic product was demonstrated by the presence of apoptotic bodies in the cytoplasm of alveolar macrophages. We conclude that apoptosis of neutrophils and clearance by alveolar macrophages are important mechanisms in the resolution of vanadium-induced lung inflammation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信