超越数据:通过个性化推荐和消费者科学,从用户信息到商业价值

X. Amatriain
{"title":"超越数据:通过个性化推荐和消费者科学,从用户信息到商业价值","authors":"X. Amatriain","doi":"10.1145/2505515.2514701","DOIUrl":null,"url":null,"abstract":"Since the Netflix $1 million Prize, announced in 2006, Netflix has been known for having personalization at the core of our product. Our current product offering is nowadays focused around instant video streaming, and our data is now many orders of magnitude larger. Not only do we have many more users in many more countries, but we also receive many more streams of data. Besides the ratings, we now also use information such as what our members play, browse, or search. In this paper I will discuss the different approaches we follow to deal with these large streams of user data in order to extract information for personalizing our service. I will describe some of the machine learning models used, and their application in the service. I will also describe our data-driven approach to innovation that combines rapid offline explorations as well as online A/B testing. This approach enables us to convert user information into real and measurable business value.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Beyond data: from user information to business value through personalized recommendations and consumer science\",\"authors\":\"X. Amatriain\",\"doi\":\"10.1145/2505515.2514701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the Netflix $1 million Prize, announced in 2006, Netflix has been known for having personalization at the core of our product. Our current product offering is nowadays focused around instant video streaming, and our data is now many orders of magnitude larger. Not only do we have many more users in many more countries, but we also receive many more streams of data. Besides the ratings, we now also use information such as what our members play, browse, or search. In this paper I will discuss the different approaches we follow to deal with these large streams of user data in order to extract information for personalizing our service. I will describe some of the machine learning models used, and their application in the service. I will also describe our data-driven approach to innovation that combines rapid offline explorations as well as online A/B testing. This approach enables us to convert user information into real and measurable business value.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2514701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2514701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

自2006年宣布Netflix获得100万美元大奖以来,Netflix一直以将个性化作为我们产品的核心而闻名。我们目前提供的产品主要集中在即时视频流媒体上,我们的数据现在要大很多个数量级。我们不仅在更多的国家拥有更多的用户,而且还接收到更多的数据流。除了评级,我们现在还使用诸如我们的成员播放,浏览或搜索的信息。在本文中,我将讨论处理这些大型用户数据流的不同方法,以便提取信息以个性化我们的服务。我将描述所使用的一些机器学习模型,以及它们在服务中的应用。我还将介绍我们的数据驱动创新方法,该方法结合了快速的离线探索和在线A/B测试。这种方法使我们能够将用户信息转换为真实的、可测量的业务价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond data: from user information to business value through personalized recommendations and consumer science
Since the Netflix $1 million Prize, announced in 2006, Netflix has been known for having personalization at the core of our product. Our current product offering is nowadays focused around instant video streaming, and our data is now many orders of magnitude larger. Not only do we have many more users in many more countries, but we also receive many more streams of data. Besides the ratings, we now also use information such as what our members play, browse, or search. In this paper I will discuss the different approaches we follow to deal with these large streams of user data in order to extract information for personalizing our service. I will describe some of the machine learning models used, and their application in the service. I will also describe our data-driven approach to innovation that combines rapid offline explorations as well as online A/B testing. This approach enables us to convert user information into real and measurable business value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信