{"title":"广义图拉普拉斯学习的快速近点算法","authors":"Zengde Deng, A. M. So","doi":"10.1109/ICASSP40776.2020.9054185","DOIUrl":null,"url":null,"abstract":"Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1 1","pages":"5425-5429"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Fast Proximal Point Algorithm for Generalized Graph Laplacian Learning\",\"authors\":\"Zengde Deng, A. M. So\",\"doi\":\"10.1109/ICASSP40776.2020.9054185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"13 1 1\",\"pages\":\"5425-5429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast Proximal Point Algorithm for Generalized Graph Laplacian Learning
Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.