{"title":"具有特征多项式序列的线性复杂度ƒv","authors":"A. Burrage, A. Sălăgean, R. Phan","doi":"10.1109/ISIT.2011.6034219","DOIUrl":null,"url":null,"abstract":"We present several generalisations of the Games-Chan algorithm. For a fixed monic irreducible polynomial ƒ we consider the sequences s that have as characteristic polynomial a power of ƒ. We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite characteristic p, the latter generalising an algorithm of Kaida et al. We also propose an algorithm which computes the linear complexity given only a finite portion of s (of length greater than or equal to the linear complexity), generalising an algorithm of Meidl. All our algorithms have linear computational complexity. The algorithms for computing the linear complexity when a full period is known can be further generalised to sequences for which it is known a priori that the irreducible factors of the minimal polynomial belong to a given small set of polynomials.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linear complexity for sequences with characteristic polynomial ƒv\",\"authors\":\"A. Burrage, A. Sălăgean, R. Phan\",\"doi\":\"10.1109/ISIT.2011.6034219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present several generalisations of the Games-Chan algorithm. For a fixed monic irreducible polynomial ƒ we consider the sequences s that have as characteristic polynomial a power of ƒ. We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite characteristic p, the latter generalising an algorithm of Kaida et al. We also propose an algorithm which computes the linear complexity given only a finite portion of s (of length greater than or equal to the linear complexity), generalising an algorithm of Meidl. All our algorithms have linear computational complexity. The algorithms for computing the linear complexity when a full period is known can be further generalised to sequences for which it is known a priori that the irreducible factors of the minimal polynomial belong to a given small set of polynomials.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6034219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linear complexity for sequences with characteristic polynomial ƒv
We present several generalisations of the Games-Chan algorithm. For a fixed monic irreducible polynomial ƒ we consider the sequences s that have as characteristic polynomial a power of ƒ. We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite characteristic p, the latter generalising an algorithm of Kaida et al. We also propose an algorithm which computes the linear complexity given only a finite portion of s (of length greater than or equal to the linear complexity), generalising an algorithm of Meidl. All our algorithms have linear computational complexity. The algorithms for computing the linear complexity when a full period is known can be further generalised to sequences for which it is known a priori that the irreducible factors of the minimal polynomial belong to a given small set of polynomials.