利用多比特近似构建块设计高效的不精确加法器

Sarvenaz Tajasob, Morteza Rezaalipour, M. Dehyadegari, M. N. Bojnordi
{"title":"利用多比特近似构建块设计高效的不精确加法器","authors":"Sarvenaz Tajasob, Morteza Rezaalipour, M. Dehyadegari, M. N. Bojnordi","doi":"10.1145/3218603.3218638","DOIUrl":null,"url":null,"abstract":"Energy-efficiency has become a major concern in designing computer systems. One of the most promising solutions to enhance power and energy-efficiency in error tolerant applications is approximate computing that balances accuracy, area, delay, and power consumption based on the computational needs. By trading accuracy of computation, approximate computing may achieve significant improvements in speed, power, and area consumption. Adders are important arithmetic units widely used in almost every digital processing system, which contribute to significant amounts of power dissipation. With the emergence of deep learning tasks and fault tolerant big data processing in every aspect of today's computing, the demand for low-power and energy-efficient approximate adders has increased significantly. Numerous designs have been proposed in the literature that build multi-bit adders using novel approximate full adder circuits. Regrettably, relying on single-bit building blocks only limits the design space of approximate adders and prevents the designers from achieving the most significant benefits of approximate circuits. This paper presents a novel approach to designing imprecise multi-bit adders, based on four novel approximate 2 and 3-bit adder building blocks. The proposed circuits are evaluated and compared with the existing low power adders in terms of various design characteristics, such as area, delay, power, and error tolerance. Our simulation results indicate that the proposed adders achieve more than 60% reduction in power and area consumption compared to the state-of-the-art approximate adders while introducing 12-17% less error in computation.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Designing Efficient Imprecise Adders using Multi-bit Approximate Building Blocks\",\"authors\":\"Sarvenaz Tajasob, Morteza Rezaalipour, M. Dehyadegari, M. N. Bojnordi\",\"doi\":\"10.1145/3218603.3218638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficiency has become a major concern in designing computer systems. One of the most promising solutions to enhance power and energy-efficiency in error tolerant applications is approximate computing that balances accuracy, area, delay, and power consumption based on the computational needs. By trading accuracy of computation, approximate computing may achieve significant improvements in speed, power, and area consumption. Adders are important arithmetic units widely used in almost every digital processing system, which contribute to significant amounts of power dissipation. With the emergence of deep learning tasks and fault tolerant big data processing in every aspect of today's computing, the demand for low-power and energy-efficient approximate adders has increased significantly. Numerous designs have been proposed in the literature that build multi-bit adders using novel approximate full adder circuits. Regrettably, relying on single-bit building blocks only limits the design space of approximate adders and prevents the designers from achieving the most significant benefits of approximate circuits. This paper presents a novel approach to designing imprecise multi-bit adders, based on four novel approximate 2 and 3-bit adder building blocks. The proposed circuits are evaluated and compared with the existing low power adders in terms of various design characteristics, such as area, delay, power, and error tolerance. Our simulation results indicate that the proposed adders achieve more than 60% reduction in power and area consumption compared to the state-of-the-art approximate adders while introducing 12-17% less error in computation.\",\"PeriodicalId\":20456,\"journal\":{\"name\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3218603.3218638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

能源效率已成为设计计算机系统的一个主要问题。在容错应用程序中提高功率和能源效率的最有前途的解决方案之一是近似计算,它根据计算需求平衡精度、面积、延迟和功耗。通过牺牲计算的准确性,近似计算可以在速度、功率和面积消耗方面取得显著的改进。加法器是几乎所有数字处理系统中广泛使用的重要算术单元,它造成了大量的功耗。随着深度学习任务和容错大数据处理在当今计算的各个方面的出现,对低功耗、节能的近似加法器的需求显著增加。文献中提出了许多设计,使用新颖的近似全加法器电路构建多比特加法器。遗憾的是,依赖于单比特构建块只会限制近似加法器的设计空间,并阻止设计者实现近似电路的最显著优势。本文提出了一种设计不精确多位加法器的新方法,该方法基于四个新颖的近似2位和3位加法器构建块。对所提出的电路进行了评估,并与现有的低功率加法器在各种设计特性(如面积、延迟、功率和容错性)方面进行了比较。我们的仿真结果表明,与最先进的近似加法器相比,所提出的加法器的功耗和面积消耗降低了60%以上,而计算误差减少了12-17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Efficient Imprecise Adders using Multi-bit Approximate Building Blocks
Energy-efficiency has become a major concern in designing computer systems. One of the most promising solutions to enhance power and energy-efficiency in error tolerant applications is approximate computing that balances accuracy, area, delay, and power consumption based on the computational needs. By trading accuracy of computation, approximate computing may achieve significant improvements in speed, power, and area consumption. Adders are important arithmetic units widely used in almost every digital processing system, which contribute to significant amounts of power dissipation. With the emergence of deep learning tasks and fault tolerant big data processing in every aspect of today's computing, the demand for low-power and energy-efficient approximate adders has increased significantly. Numerous designs have been proposed in the literature that build multi-bit adders using novel approximate full adder circuits. Regrettably, relying on single-bit building blocks only limits the design space of approximate adders and prevents the designers from achieving the most significant benefits of approximate circuits. This paper presents a novel approach to designing imprecise multi-bit adders, based on four novel approximate 2 and 3-bit adder building blocks. The proposed circuits are evaluated and compared with the existing low power adders in terms of various design characteristics, such as area, delay, power, and error tolerance. Our simulation results indicate that the proposed adders achieve more than 60% reduction in power and area consumption compared to the state-of-the-art approximate adders while introducing 12-17% less error in computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信