基于同行评议的引文计数预测的可解释方面感知胶囊网络

Siqing Li, Yaliang Li, Wayne Xin Zhao, Bolin Ding, Ji-rong Wen
{"title":"基于同行评议的引文计数预测的可解释方面感知胶囊网络","authors":"Siqing Li, Yaliang Li, Wayne Xin Zhao, Bolin Ding, Ji-rong Wen","doi":"10.1145/3466640","DOIUrl":null,"url":null,"abstract":"Citation count prediction is an important task for estimating the future impact of research papers. Most of the existing works utilize the information extracted from the paper itself. In this article, we focus on how to utilize another kind of useful data signal (i.e., peer review text) to improve both the performance and interpretability of the prediction models. Specially, we propose a novel aspect-aware capsule network for citation count prediction based on review text. It contains two major capsule layers, namely the feature capsule layer and the aspect capsule layer, with two different routing approaches, respectively. Feature capsules encode the local semantics from review sentences as the input of aspect capsule layer, whereas aspect capsules aim to capture high-level semantic features that will be served as final representations for prediction. Besides the predictive capacity, we also enhance the model interpretability with two strategies. First, we use the topic distribution of the review text to guide the learning of aspect capsules so that each aspect capsule can represent a specific aspect in the review. Then, we use the learned aspect capsules to generate readable text for explaining the predicted citation count. Extensive experiments on two real-world datasets have demonstrated the effectiveness of the proposed model in both performance and interpretability.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"51 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpretable Aspect-Aware Capsule Network for Peer Review Based Citation Count Prediction\",\"authors\":\"Siqing Li, Yaliang Li, Wayne Xin Zhao, Bolin Ding, Ji-rong Wen\",\"doi\":\"10.1145/3466640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Citation count prediction is an important task for estimating the future impact of research papers. Most of the existing works utilize the information extracted from the paper itself. In this article, we focus on how to utilize another kind of useful data signal (i.e., peer review text) to improve both the performance and interpretability of the prediction models. Specially, we propose a novel aspect-aware capsule network for citation count prediction based on review text. It contains two major capsule layers, namely the feature capsule layer and the aspect capsule layer, with two different routing approaches, respectively. Feature capsules encode the local semantics from review sentences as the input of aspect capsule layer, whereas aspect capsules aim to capture high-level semantic features that will be served as final representations for prediction. Besides the predictive capacity, we also enhance the model interpretability with two strategies. First, we use the topic distribution of the review text to guide the learning of aspect capsules so that each aspect capsule can represent a specific aspect in the review. Then, we use the learned aspect capsules to generate readable text for explaining the predicted citation count. Extensive experiments on two real-world datasets have demonstrated the effectiveness of the proposed model in both performance and interpretability.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"51 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

引文数预测是评估研究论文未来影响力的重要任务。现有的大部分作品都是利用从论文本身提取的信息。在本文中,我们关注如何利用另一种有用的数据信号(即同行评审文本)来提高预测模型的性能和可解释性。特别地,我们提出了一种新的基于综述文本的引文数量预测的方面感知胶囊网络。它包含两个主要的胶囊层,即特征胶囊层和方面胶囊层,分别采用两种不同的路由方式。特征胶囊对评审句子的局部语义进行编码,作为方面胶囊层的输入,而方面胶囊的目的是捕获高级语义特征,作为预测的最终表示。除了提高预测能力外,我们还采用了两种策略来增强模型的可解释性。首先,我们利用复习文本的主题分布来指导方面胶囊的学习,使每个方面胶囊在复习中代表一个特定的方面。然后,我们使用学习到的方面胶囊生成可读文本来解释预测的引用计数。在两个真实数据集上进行的大量实验证明了所提出模型在性能和可解释性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Aspect-Aware Capsule Network for Peer Review Based Citation Count Prediction
Citation count prediction is an important task for estimating the future impact of research papers. Most of the existing works utilize the information extracted from the paper itself. In this article, we focus on how to utilize another kind of useful data signal (i.e., peer review text) to improve both the performance and interpretability of the prediction models. Specially, we propose a novel aspect-aware capsule network for citation count prediction based on review text. It contains two major capsule layers, namely the feature capsule layer and the aspect capsule layer, with two different routing approaches, respectively. Feature capsules encode the local semantics from review sentences as the input of aspect capsule layer, whereas aspect capsules aim to capture high-level semantic features that will be served as final representations for prediction. Besides the predictive capacity, we also enhance the model interpretability with two strategies. First, we use the topic distribution of the review text to guide the learning of aspect capsules so that each aspect capsule can represent a specific aspect in the review. Then, we use the learned aspect capsules to generate readable text for explaining the predicted citation count. Extensive experiments on two real-world datasets have demonstrated the effectiveness of the proposed model in both performance and interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信