一种基于同态加密的持久同态计算算法

Dominic Gold, Koray Karabina, Francis C. Motta
{"title":"一种基于同态加密的持久同态计算算法","authors":"Dominic Gold, Koray Karabina, Francis C. Motta","doi":"10.48550/arXiv.2307.01923","DOIUrl":null,"url":null,"abstract":"Topological Data Analysis (TDA) offers a suite of computational tools that provide quantified shape features in high dimensional data that can be used by modern statistical and predictive machine learning (ML) models. In particular, persistent homology (PH) takes in data (e.g., point clouds, images, time series) and derives compact representations of latent topological structures, known as persistence diagrams (PDs). Because PDs enjoy inherent noise tolerance, are interpretable and provide a solid basis for data analysis, and can be made compatible with the expansive set of well-established ML model architectures, PH has been widely adopted for model development including on sensitive data, such as genomic, cancer, sensor network, and financial data. Thus, TDA should be incorporated into secure end-to-end data analysis pipelines. In this paper, we take the first step to address this challenge and develop a version of the fundamental algorithm to compute PH on encrypted data using homomorphic encryption (HE).","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"47 1","pages":"1048"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm for Persistent Homology Computation Using Homomorphic Encryption\",\"authors\":\"Dominic Gold, Koray Karabina, Francis C. Motta\",\"doi\":\"10.48550/arXiv.2307.01923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological Data Analysis (TDA) offers a suite of computational tools that provide quantified shape features in high dimensional data that can be used by modern statistical and predictive machine learning (ML) models. In particular, persistent homology (PH) takes in data (e.g., point clouds, images, time series) and derives compact representations of latent topological structures, known as persistence diagrams (PDs). Because PDs enjoy inherent noise tolerance, are interpretable and provide a solid basis for data analysis, and can be made compatible with the expansive set of well-established ML model architectures, PH has been widely adopted for model development including on sensitive data, such as genomic, cancer, sensor network, and financial data. Thus, TDA should be incorporated into secure end-to-end data analysis pipelines. In this paper, we take the first step to address this challenge and develop a version of the fundamental algorithm to compute PH on encrypted data using homomorphic encryption (HE).\",\"PeriodicalId\":13158,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"47 1\",\"pages\":\"1048\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.01923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.01923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑数据分析(TDA)提供了一套计算工具,可以为现代统计和预测机器学习(ML)模型提供高维数据中的量化形状特征。特别是,持久同构(PH)接收数据(例如,点云、图像、时间序列)并派生潜在拓扑结构的紧凑表示,称为持久化图(pd)。由于pd具有固有的噪声耐受性,可解释并为数据分析提供坚实的基础,并且可以与广泛建立的ML模型架构兼容,PH已被广泛用于模型开发,包括敏感数据,如基因组,癌症,传感器网络和金融数据。因此,TDA应该被整合到安全的端到端数据分析管道中。在本文中,我们采取了解决这一挑战的第一步,并开发了一个基本算法的版本,使用同态加密(HE)在加密数据上计算PH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Persistent Homology Computation Using Homomorphic Encryption
Topological Data Analysis (TDA) offers a suite of computational tools that provide quantified shape features in high dimensional data that can be used by modern statistical and predictive machine learning (ML) models. In particular, persistent homology (PH) takes in data (e.g., point clouds, images, time series) and derives compact representations of latent topological structures, known as persistence diagrams (PDs). Because PDs enjoy inherent noise tolerance, are interpretable and provide a solid basis for data analysis, and can be made compatible with the expansive set of well-established ML model architectures, PH has been widely adopted for model development including on sensitive data, such as genomic, cancer, sensor network, and financial data. Thus, TDA should be incorporated into secure end-to-end data analysis pipelines. In this paper, we take the first step to address this challenge and develop a version of the fundamental algorithm to compute PH on encrypted data using homomorphic encryption (HE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信