面向领域自适应的解纠缠语义表示学习

Ruichu Cai, Zijian Li, Pengfei Wei, Jie Qiao, Kun Zhang, Z. Hao
{"title":"面向领域自适应的解纠缠语义表示学习","authors":"Ruichu Cai, Zijian Li, Pengfei Wei, Jie Qiao, Kun Zhang, Z. Hao","doi":"10.24963/ijcai.2019/285","DOIUrl":null,"url":null,"abstract":"Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.","PeriodicalId":73334,"journal":{"name":"IJCAI : proceedings of the conference","volume":"39 1","pages":"2060-2066"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Learning Disentangled Semantic Representation for Domain Adaptation\",\"authors\":\"Ruichu Cai, Zijian Li, Pengfei Wei, Jie Qiao, Kun Zhang, Z. Hao\",\"doi\":\"10.24963/ijcai.2019/285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.\",\"PeriodicalId\":73334,\"journal\":{\"name\":\"IJCAI : proceedings of the conference\",\"volume\":\"39 1\",\"pages\":\"2060-2066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCAI : proceedings of the conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24963/ijcai.2019/285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCAI : proceedings of the conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2019/285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

领域自适应是一项重要而富有挑战性的任务。现有的领域自适应方法大都存在领域信息与语义信息纠缠的问题,难以在特征空间上提取出领域不变的表示。与以往对纠缠特征空间的研究不同,我们的目标是在数据的潜在解纠缠语义表示(DSR)中提取领域不变的语义信息。在DSR中,我们假设数据生成过程由两组独立的变量控制,即语义潜变量和领域潜变量。在上述假设下,我们采用变分自编码器重构数据背后的语义潜变量和领域潜变量。我们进一步设计了一个对偶对抗网络来解开这两组重构的潜在变量。最后对解耦后的语义潜变量进行跨域适配。实验研究证明,我们的模型在几个领域自适应基准数据集上产生了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Disentangled Semantic Representation for Domain Adaptation
Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信