P. Schöttl, S. Rohani, E. Leonardi, L. Pisani, Íñigo Les, Amaia Mutuberria, P. Nitz
{"title":"基于多边形优化和边界的太阳场定日镜选择","authors":"P. Schöttl, S. Rohani, E. Leonardi, L. Pisani, Íñigo Les, Amaia Mutuberria, P. Nitz","doi":"10.1063/1.5117565","DOIUrl":null,"url":null,"abstract":"A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Solar field heliostat selection based on polygon optimization and boundaries\",\"authors\":\"P. Schöttl, S. Rohani, E. Leonardi, L. Pisani, Íñigo Les, Amaia Mutuberria, P. Nitz\",\"doi\":\"10.1063/1.5117565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar field heliostat selection based on polygon optimization and boundaries
A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.A novel methodology for the design of heliostat fields is presented, based on the selection of heliostats from an oversized field by means of a polygon. To obtain the ideal field shape, the polygon vertices are optimized with an evolutionary algorithm. The objective function calculates a weighted tradeoff between annual optical efficiency and ground usage and is applied to the entire field instead of individual heliostats. Various other figures of merit could be readily integrated. To be able to deal with complex shaped land available for the Solar Tower plant, area boundaries are taken into account during the optimization phase. The application of the methodology is demonstrated by means of a reference scenario and multiple variations of parameters and area boundaries. The polygon selection creates smooth, coherent heliostat fields with high performance regarding the objectives, while solving several practical issues in the heliostat field design phase at the same time.