乘积的链式条件和弱紧基数

Pub Date : 2014-09-01 DOI:10.1017/BSL.2014.24
A. Rinot
{"title":"乘积的链式条件和弱紧基数","authors":"A. Rinot","doi":"10.1017/BSL.2014.24","DOIUrl":null,"url":null,"abstract":"The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\\kappa > \\aleph _1 {\\rm{,}}$\n the principle □( k ) is equivalent to the existence of a certain strong coloring $c\\,:\\,[k]^2 \\, \\to $\n k for which the family of fibers ${\\cal T}\\left( c \\right)$\n is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\\kappa > \\aleph _1 {\\rm{,}}$\n then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Chain conditions of Products, and Weakly Compact Cardinals\",\"authors\":\"A. Rinot\",\"doi\":\"10.1017/BSL.2014.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\\\\kappa > \\\\aleph _1 {\\\\rm{,}}$\\n the principle □( k ) is equivalent to the existence of a certain strong coloring $c\\\\,:\\\\,[k]^2 \\\\, \\\\to $\\n k for which the family of fibers ${\\\\cal T}\\\\left( c \\\\right)$\\n is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\\\\kappa > \\\\aleph _1 {\\\\rm{,}}$\\n then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/BSL.2014.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

研究了k -链条件在偏序、拓扑空间或布尔代数中的生产力的历史,并强调了它与弱紧基数的集合论概念的联系。然后,证明了对于每一个正则基$\kappa > \aleph _1 {\rm{,}}$,原理□(k)等价于一个强着色$c\,:\,[k]^2 \, \to $ k的存在性,对于该强着色 k,纤维族${\cal T}\left( c \right)$是一个非特殊的κ -Aronszajn树。该定理来源于对序上行走的一个新的特征函数的分析,并特别表明,如果κ链条件对于给定的正则基数$\kappa > \aleph _1 {\rm{,}}$是有效的,则κ在ZFC的某个内模型中是弱紧的。这提供了一个部分相反的事实,如果κ是一个弱紧基数,那么κ链条件是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Chain conditions of Products, and Weakly Compact Cardinals
The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\kappa > \aleph _1 {\rm{,}}$ the principle □( k ) is equivalent to the existence of a certain strong coloring $c\,:\,[k]^2 \, \to $ k for which the family of fibers ${\cal T}\left( c \right)$ is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\kappa > \aleph _1 {\rm{,}}$ then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信