{"title":"乘积的链式条件和弱紧基数","authors":"A. Rinot","doi":"10.1017/BSL.2014.24","DOIUrl":null,"url":null,"abstract":"The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\\kappa > \\aleph _1 {\\rm{,}}$\n the principle □( k ) is equivalent to the existence of a certain strong coloring $c\\,:\\,[k]^2 \\, \\to $\n k for which the family of fibers ${\\cal T}\\left( c \\right)$\n is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\\kappa > \\aleph _1 {\\rm{,}}$\n then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Chain conditions of Products, and Weakly Compact Cardinals\",\"authors\":\"A. Rinot\",\"doi\":\"10.1017/BSL.2014.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\\\\kappa > \\\\aleph _1 {\\\\rm{,}}$\\n the principle □( k ) is equivalent to the existence of a certain strong coloring $c\\\\,:\\\\,[k]^2 \\\\, \\\\to $\\n k for which the family of fibers ${\\\\cal T}\\\\left( c \\\\right)$\\n is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\\\\kappa > \\\\aleph _1 {\\\\rm{,}}$\\n then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/BSL.2014.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chain conditions of Products, and Weakly Compact Cardinals
The history of productivity of the κ -chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal $\kappa > \aleph _1 {\rm{,}}$
the principle □( k ) is equivalent to the existence of a certain strong coloring $c\,:\,[k]^2 \, \to $
k for which the family of fibers ${\cal T}\left( c \right)$
is a nonspecial κ -Aronszajn tree. The theorem follows from an analysis of a new characteristic function for walks on ordinals, and implies in particular that if the κ -chain condition is productive for a given regular cardinal $\kappa > \aleph _1 {\rm{,}}$
then κ is weakly compact in some inner model of ZFC. This provides a partial converse to the fact that if κ is a weakly compact cardinal, then the κ -chain condition is productive.