与固体表面边界条件有关的二维Navier-Stokes方程的差分格式的特点

M.N. Zakharenkov
{"title":"与固体表面边界条件有关的二维Navier-Stokes方程的差分格式的特点","authors":"M.N. Zakharenkov","doi":"10.1016/0041-5553(90)90061-V","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of the numerical treatment of the two-dimensional Navier-Stokes equations, the boundary conditionsatasolid surface may be realized in different ways, some of which are examined. The approach considered here assumes that the equations of the system are solved separately. It is shown that then, irrespective of the specific formulation of the Navier-Stokes equations for an incompressible viscous liquid — in terms of velocity-pressure, velocity-vorticity or vorticity-stream function — the boundary conditions can be realized in an algorithmically universal way, based on a two-parameter formula previously proposed to approximate vorticity on a wall.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 4","pages":"Pages 182-190"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90061-V","citationCount":"1","resultStr":"{\"title\":\"Special features of difference schemes for solving the two-dimensional Navier-Stokes equations, connected with the formulation of the boundary conditions on the solid surface\",\"authors\":\"M.N. Zakharenkov\",\"doi\":\"10.1016/0041-5553(90)90061-V\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of the numerical treatment of the two-dimensional Navier-Stokes equations, the boundary conditionsatasolid surface may be realized in different ways, some of which are examined. The approach considered here assumes that the equations of the system are solved separately. It is shown that then, irrespective of the specific formulation of the Navier-Stokes equations for an incompressible viscous liquid — in terms of velocity-pressure, velocity-vorticity or vorticity-stream function — the boundary conditions can be realized in an algorithmically universal way, based on a two-parameter formula previously proposed to approximate vorticity on a wall.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 4\",\"pages\":\"Pages 182-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90061-V\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090061V\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090061V","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在二维Navier-Stokes方程的数值处理的背景下,固体表面的边界条件可以用不同的方式实现,其中一些方法进行了研究。这里考虑的方法假定系统的方程是单独求解的。结果表明,无论不可压缩粘性液体的Navier-Stokes方程的具体表达式是速度-压力、速度-涡量还是涡量-流函数,边界条件都可以基于先前提出的近似壁面涡量的双参数公式,以一种算法通用的方式实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special features of difference schemes for solving the two-dimensional Navier-Stokes equations, connected with the formulation of the boundary conditions on the solid surface

In the context of the numerical treatment of the two-dimensional Navier-Stokes equations, the boundary conditionsatasolid surface may be realized in different ways, some of which are examined. The approach considered here assumes that the equations of the system are solved separately. It is shown that then, irrespective of the specific formulation of the Navier-Stokes equations for an incompressible viscous liquid — in terms of velocity-pressure, velocity-vorticity or vorticity-stream function — the boundary conditions can be realized in an algorithmically universal way, based on a two-parameter formula previously proposed to approximate vorticity on a wall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信