在冻融过程中引起胶凝材料损伤的内部压力是什么?微观力学分析

IF 12.2 1区 工程技术 Q1 MECHANICS
J. Timothy, Alexander Haynack, T. Kränkel, C. Gehlen
{"title":"在冻融过程中引起胶凝材料损伤的内部压力是什么?微观力学分析","authors":"J. Timothy, Alexander Haynack, T. Kränkel, C. Gehlen","doi":"10.3390/applmech3040074","DOIUrl":null,"url":null,"abstract":"Damage induced by repetitive freezing and thawing processes is one of the critical factors that affect concrete durability in cold climates. This deterioration process manifests as surface scaling and internal damage. The damage processes are governed by physicochemical mechanisms that are active across multiple scales. In this contribution, we present a novel multiscale theoretical framework for estimating the critical pressure required for microcrack initiation during freezing and thawing of cementitious mortar. Continuum micromechanics and fracture mechanics is used to model the phenomena of microcrack initiation and growth. Damage at the microscale is upscaled to the level of the specimen using multilevel homogenization. The critical pressure is estimated using poromechanics at the microscopic scale. A theoretical analysis shows that in the frozen state, the material can resist higher pressures. As a consequence, the material is more susceptible to damage during thawing. The micromechanical predictions are within the range of the predictions obtained by electrokinetic theory.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"119 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"What Is the Internal Pressure That Initiates Damage in Cementitious Materials during Freezing and Thawing? A Micromechanical Analysis\",\"authors\":\"J. Timothy, Alexander Haynack, T. Kränkel, C. Gehlen\",\"doi\":\"10.3390/applmech3040074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Damage induced by repetitive freezing and thawing processes is one of the critical factors that affect concrete durability in cold climates. This deterioration process manifests as surface scaling and internal damage. The damage processes are governed by physicochemical mechanisms that are active across multiple scales. In this contribution, we present a novel multiscale theoretical framework for estimating the critical pressure required for microcrack initiation during freezing and thawing of cementitious mortar. Continuum micromechanics and fracture mechanics is used to model the phenomena of microcrack initiation and growth. Damage at the microscale is upscaled to the level of the specimen using multilevel homogenization. The critical pressure is estimated using poromechanics at the microscopic scale. A theoretical analysis shows that in the frozen state, the material can resist higher pressures. As a consequence, the material is more susceptible to damage during thawing. The micromechanical predictions are within the range of the predictions obtained by electrokinetic theory.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/applmech3040074\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech3040074","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

反复冻融过程引起的损伤是影响寒冷气候条件下混凝土耐久性的关键因素之一。这种劣化过程表现为表面结垢和内部损伤。损伤过程是由物理化学机制控制的,这种机制在多个尺度上都是活跃的。在这一贡献中,我们提出了一个新的多尺度理论框架,用于估计胶凝砂浆冻结和融化过程中微裂纹萌生所需的临界压力。用连续体细观力学和断裂力学模拟了微裂纹的萌生和扩展。使用多级均质化技术将微尺度的损伤提升到试样的水平。利用孔隙力学在微观尺度上估计临界压力。理论分析表明,在冻结状态下,材料可以抵抗更高的压力。因此,这种材料在解冻过程中更容易受到破坏。微力学预测在电动力学理论预测的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Is the Internal Pressure That Initiates Damage in Cementitious Materials during Freezing and Thawing? A Micromechanical Analysis
Damage induced by repetitive freezing and thawing processes is one of the critical factors that affect concrete durability in cold climates. This deterioration process manifests as surface scaling and internal damage. The damage processes are governed by physicochemical mechanisms that are active across multiple scales. In this contribution, we present a novel multiscale theoretical framework for estimating the critical pressure required for microcrack initiation during freezing and thawing of cementitious mortar. Continuum micromechanics and fracture mechanics is used to model the phenomena of microcrack initiation and growth. Damage at the microscale is upscaled to the level of the specimen using multilevel homogenization. The critical pressure is estimated using poromechanics at the microscopic scale. A theoretical analysis shows that in the frozen state, the material can resist higher pressures. As a consequence, the material is more susceptible to damage during thawing. The micromechanical predictions are within the range of the predictions obtained by electrokinetic theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.20
自引率
0.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信