Lyndsay Davies, K. Milligan, Mark Corris, I. Clarke, Paul Dwyer, Sarah Elizabeth Lee, Jolene Teraoka, Jill Crouse-Zeineddini, J. Hippenmeyer
{"title":"曲妥珠单抗生物仿制药ABP 980 (KANJINTI™)在聚烯烃袋和弹性体装置中的扩展稳定性","authors":"Lyndsay Davies, K. Milligan, Mark Corris, I. Clarke, Paul Dwyer, Sarah Elizabeth Lee, Jolene Teraoka, Jill Crouse-Zeineddini, J. Hippenmeyer","doi":"10.5639/gabij.2021.1004.021","DOIUrl":null,"url":null,"abstract":"Study Objectives: To investigate the quality and in-use stability of the trastuzumab biosimilar ABP 980 (KANJINTI™) in both concentrated multi-dose bags and following dilution and extended storage in intravenous (IV) bags and elastomeric devices, to address the stability requirements of diff erent global pharmacy practices. Methods: The eff ect of extended refrigerated storage plus exposure to in-use temperature conditions on KANJINTI™ (trastuzumab) solutions was assessed using a range of stability-indicating analytical methods, including appearance, pH, SEC, nonreducing CGE, reducing-CGE, CZE, sub-visible particle counting and potency by a cell-based proliferation inhibition assay. Stability of reconstituted 21 mg/mL solution stored in multi-dose bags and diluted samples at 0.3 mg/mL, 0.8 mg/mL and 4 mg/ mL in 0.9% w/v NaCl solutions stored in IV bags and elastomeric devices was determined over diff erent storage durations. Forced degraded samples exposed to room temperature and natural daylight were used to demonstrate the stability-indicating abilities of the methods. Results: No signifi cant changes were observed in the appearance, pH, monomer concentration, purity, charge heterogeneity, sub-visible particle counts or bioactivity, regardless of initial concentration, container or storage duration. Discussion: There was no indication of signifi cant changes to the physicochemical stability or bioactivity of any of the solutions following extended storage when compared to the initial results acquired on the day of preparation. Conclusion: The data presented has demonstrated the physicochemical stability and bioactivity of a range of KANJINTI™ (trastuzumab) solutions when prepared using controlled and validated aseptic processes, stored protected from light for extended periods at 2°C–8°C and subjected to in-use temperatures. The stability demonstrated in multi-dose bags and elastomeric devices provides additional preparation options to address diff erent global pharmacy practices and requirements.","PeriodicalId":43994,"journal":{"name":"GaBI Journal-Generics and Biosimilars Initiative Journal","volume":"183 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended stability of the trastuzumab biosimilar ABP 980 (KANJINTI™) in polyolefin bags and elastomeric devices\",\"authors\":\"Lyndsay Davies, K. Milligan, Mark Corris, I. Clarke, Paul Dwyer, Sarah Elizabeth Lee, Jolene Teraoka, Jill Crouse-Zeineddini, J. Hippenmeyer\",\"doi\":\"10.5639/gabij.2021.1004.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Study Objectives: To investigate the quality and in-use stability of the trastuzumab biosimilar ABP 980 (KANJINTI™) in both concentrated multi-dose bags and following dilution and extended storage in intravenous (IV) bags and elastomeric devices, to address the stability requirements of diff erent global pharmacy practices. Methods: The eff ect of extended refrigerated storage plus exposure to in-use temperature conditions on KANJINTI™ (trastuzumab) solutions was assessed using a range of stability-indicating analytical methods, including appearance, pH, SEC, nonreducing CGE, reducing-CGE, CZE, sub-visible particle counting and potency by a cell-based proliferation inhibition assay. Stability of reconstituted 21 mg/mL solution stored in multi-dose bags and diluted samples at 0.3 mg/mL, 0.8 mg/mL and 4 mg/ mL in 0.9% w/v NaCl solutions stored in IV bags and elastomeric devices was determined over diff erent storage durations. Forced degraded samples exposed to room temperature and natural daylight were used to demonstrate the stability-indicating abilities of the methods. Results: No signifi cant changes were observed in the appearance, pH, monomer concentration, purity, charge heterogeneity, sub-visible particle counts or bioactivity, regardless of initial concentration, container or storage duration. Discussion: There was no indication of signifi cant changes to the physicochemical stability or bioactivity of any of the solutions following extended storage when compared to the initial results acquired on the day of preparation. Conclusion: The data presented has demonstrated the physicochemical stability and bioactivity of a range of KANJINTI™ (trastuzumab) solutions when prepared using controlled and validated aseptic processes, stored protected from light for extended periods at 2°C–8°C and subjected to in-use temperatures. The stability demonstrated in multi-dose bags and elastomeric devices provides additional preparation options to address diff erent global pharmacy practices and requirements.\",\"PeriodicalId\":43994,\"journal\":{\"name\":\"GaBI Journal-Generics and Biosimilars Initiative Journal\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GaBI Journal-Generics and Biosimilars Initiative Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5639/gabij.2021.1004.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GaBI Journal-Generics and Biosimilars Initiative Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5639/gabij.2021.1004.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Extended stability of the trastuzumab biosimilar ABP 980 (KANJINTI™) in polyolefin bags and elastomeric devices
Study Objectives: To investigate the quality and in-use stability of the trastuzumab biosimilar ABP 980 (KANJINTI™) in both concentrated multi-dose bags and following dilution and extended storage in intravenous (IV) bags and elastomeric devices, to address the stability requirements of diff erent global pharmacy practices. Methods: The eff ect of extended refrigerated storage plus exposure to in-use temperature conditions on KANJINTI™ (trastuzumab) solutions was assessed using a range of stability-indicating analytical methods, including appearance, pH, SEC, nonreducing CGE, reducing-CGE, CZE, sub-visible particle counting and potency by a cell-based proliferation inhibition assay. Stability of reconstituted 21 mg/mL solution stored in multi-dose bags and diluted samples at 0.3 mg/mL, 0.8 mg/mL and 4 mg/ mL in 0.9% w/v NaCl solutions stored in IV bags and elastomeric devices was determined over diff erent storage durations. Forced degraded samples exposed to room temperature and natural daylight were used to demonstrate the stability-indicating abilities of the methods. Results: No signifi cant changes were observed in the appearance, pH, monomer concentration, purity, charge heterogeneity, sub-visible particle counts or bioactivity, regardless of initial concentration, container or storage duration. Discussion: There was no indication of signifi cant changes to the physicochemical stability or bioactivity of any of the solutions following extended storage when compared to the initial results acquired on the day of preparation. Conclusion: The data presented has demonstrated the physicochemical stability and bioactivity of a range of KANJINTI™ (trastuzumab) solutions when prepared using controlled and validated aseptic processes, stored protected from light for extended periods at 2°C–8°C and subjected to in-use temperatures. The stability demonstrated in multi-dose bags and elastomeric devices provides additional preparation options to address diff erent global pharmacy practices and requirements.
期刊介绍:
The scope of GaBI Journal is broad and of interest and relevance to professionals active in clinical practice, pharmaceutical science and policy. Materials published in GaBI Journal include high quality research reports, literature reviews and case studies, all of which are peer reviewed. Manuscripts on all aspects of generic and biosimilar medicines, covering areas in clinical, fundamental, technical, manufacturing, bi-processing, economic and social aspects of pharmaceuticals and therapeutics are welcome. In addition, high quality work submitted in other formats, for example, scientific and evidence-based commentaries, may also be considered. In all cases, the emphasis is on quality, originality and knowledge contribution to those involved in health care. All manuscripts submitted to GaBI Journal are subject to a rigorous peer review process. GaBI Journal plans to be indexed in PubMed within two years, and that indexing will be retrospective. GaBI Journal is published quarterly from 2012. All articles are published in English.