石墨烯的纳米机器人加工用于快速器件原型设计

S. Zimmermann, S. A. Barragan, S. Fatikow
{"title":"石墨烯的纳米机器人加工用于快速器件原型设计","authors":"S. Zimmermann, S. A. Barragan, S. Fatikow","doi":"10.1109/NEMS.2014.6908807","DOIUrl":null,"url":null,"abstract":"This paper presents a nanorobotic platform tailored for rapid prototyping of graphene based devices. Applying the capabilities of this platform, a nanorobotic strategy is proposed that enables the identification, electrical characterization and integration of graphene into device structures without using any time-consuming lithography procedures. In this way, graphene based devices can be fabricated and classified within few hours, significantly reducing the effort and consequently the costs of device prototyping. As an example of this strategy, graphene flakes are characterized and subsequently transferred onto trench structures resulting in partially suspended areas suitable to study graphene based nanoelectromechanical systems.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"32 1","pages":"275-280"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nanorobotic processing of graphene for rapid device prototyping\",\"authors\":\"S. Zimmermann, S. A. Barragan, S. Fatikow\",\"doi\":\"10.1109/NEMS.2014.6908807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a nanorobotic platform tailored for rapid prototyping of graphene based devices. Applying the capabilities of this platform, a nanorobotic strategy is proposed that enables the identification, electrical characterization and integration of graphene into device structures without using any time-consuming lithography procedures. In this way, graphene based devices can be fabricated and classified within few hours, significantly reducing the effort and consequently the costs of device prototyping. As an example of this strategy, graphene flakes are characterized and subsequently transferred onto trench structures resulting in partially suspended areas suitable to study graphene based nanoelectromechanical systems.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"32 1\",\"pages\":\"275-280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种为石墨烯基器件的快速原型设计量身定制的纳米机器人平台。利用该平台的功能,提出了一种纳米机器人策略,可以在不使用任何耗时的光刻程序的情况下,将石墨烯识别、电学表征和集成到器件结构中。通过这种方式,基于石墨烯的器件可以在几个小时内制造和分类,从而大大减少了器件原型制作的工作量和成本。作为该策略的一个例子,石墨烯薄片被表征并随后转移到沟槽结构上,从而形成适合研究基于石墨烯的纳米机电系统的部分悬浮区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanorobotic processing of graphene for rapid device prototyping
This paper presents a nanorobotic platform tailored for rapid prototyping of graphene based devices. Applying the capabilities of this platform, a nanorobotic strategy is proposed that enables the identification, electrical characterization and integration of graphene into device structures without using any time-consuming lithography procedures. In this way, graphene based devices can be fabricated and classified within few hours, significantly reducing the effort and consequently the costs of device prototyping. As an example of this strategy, graphene flakes are characterized and subsequently transferred onto trench structures resulting in partially suspended areas suitable to study graphene based nanoelectromechanical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信