基于深度卷积神经网络的数字乳房x光片自动多类分割

Vincent Dong, Tristan D. Maidment, L. Borges, Katherine Hopkins, Johnny Kuo, Albert Milani, Peter Ringer, S. Ng
{"title":"基于深度卷积神经网络的数字乳房x光片自动多类分割","authors":"Vincent Dong, Tristan D. Maidment, L. Borges, Katherine Hopkins, Johnny Kuo, Albert Milani, Peter Ringer, S. Ng","doi":"10.1117/12.2626624","DOIUrl":null,"url":null,"abstract":"Digital mammography (DM) and digital breast tomosynthesis, the gold standards for breast cancer screening, requires correct breast positioning to ensure accuracy. Improper positioning can result in missed cancers, or can lead to additional imaging. We propose an automated deep learning (DL) segmentation approach to perform multi-class identification of regions of interest (ROI) commonly used for identification of poor positioning in mediolateral oblique (MLO) breast views. We hypothesize that by leveraging the capabilities of DL through the use of the well-founded U-Net model architecture, multi-class DL-based segmentation approaches can accurately identify air, parenchyma, pectoralis, and nipple locations within MLO images. In this study, we employed model hyperparameter searches to determine optimal model parameters for our proposed DL architecture, including the optimal loss function configuration; our best model achieved an average Sørensen-Dice coefficient of 0.919 ± 0.061 on the held-out test set. We identified high levels of localization performance in the nipple ROI. We believe our proposed segmentation model can be a foundational step in further mammogram analysis, such as for breast positioning and localized image processing tools.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"6 1","pages":"122860M - 122860M-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated multi-class segmentation of digital mammograms with deep convolutional neural networks\",\"authors\":\"Vincent Dong, Tristan D. Maidment, L. Borges, Katherine Hopkins, Johnny Kuo, Albert Milani, Peter Ringer, S. Ng\",\"doi\":\"10.1117/12.2626624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital mammography (DM) and digital breast tomosynthesis, the gold standards for breast cancer screening, requires correct breast positioning to ensure accuracy. Improper positioning can result in missed cancers, or can lead to additional imaging. We propose an automated deep learning (DL) segmentation approach to perform multi-class identification of regions of interest (ROI) commonly used for identification of poor positioning in mediolateral oblique (MLO) breast views. We hypothesize that by leveraging the capabilities of DL through the use of the well-founded U-Net model architecture, multi-class DL-based segmentation approaches can accurately identify air, parenchyma, pectoralis, and nipple locations within MLO images. In this study, we employed model hyperparameter searches to determine optimal model parameters for our proposed DL architecture, including the optimal loss function configuration; our best model achieved an average Sørensen-Dice coefficient of 0.919 ± 0.061 on the held-out test set. We identified high levels of localization performance in the nipple ROI. We believe our proposed segmentation model can be a foundational step in further mammogram analysis, such as for breast positioning and localized image processing tools.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"6 1\",\"pages\":\"122860M - 122860M-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2626624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2626624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字乳房x线摄影(DM)和数字乳房断层合成是乳腺癌筛查的金标准,需要正确的乳房定位以确保准确性。不正确的定位可能会导致遗漏癌症,或者导致额外的影像学检查。我们提出了一种自动深度学习(DL)分割方法来执行多类识别感兴趣区域(ROI),通常用于识别中外侧斜位(MLO)乳房视图中的不良定位。我们假设,通过使用完善的U-Net模型架构,利用深度学习的功能,基于多类深度学习的分割方法可以准确地识别MLO图像中的空气、实质、胸肌和乳头位置。在这项研究中,我们使用模型超参数搜索来确定我们提出的深度学习架构的最优模型参数,包括最优损失函数配置;我们的最佳模型在hold out测试集上的平均Sørensen-Dice系数为0.919±0.061。我们确定了乳头ROI的高水平定位性能。我们相信我们提出的分割模型可以成为进一步乳房x光检查分析的基础步骤,例如乳房定位和定位图像处理工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated multi-class segmentation of digital mammograms with deep convolutional neural networks
Digital mammography (DM) and digital breast tomosynthesis, the gold standards for breast cancer screening, requires correct breast positioning to ensure accuracy. Improper positioning can result in missed cancers, or can lead to additional imaging. We propose an automated deep learning (DL) segmentation approach to perform multi-class identification of regions of interest (ROI) commonly used for identification of poor positioning in mediolateral oblique (MLO) breast views. We hypothesize that by leveraging the capabilities of DL through the use of the well-founded U-Net model architecture, multi-class DL-based segmentation approaches can accurately identify air, parenchyma, pectoralis, and nipple locations within MLO images. In this study, we employed model hyperparameter searches to determine optimal model parameters for our proposed DL architecture, including the optimal loss function configuration; our best model achieved an average Sørensen-Dice coefficient of 0.919 ± 0.061 on the held-out test set. We identified high levels of localization performance in the nipple ROI. We believe our proposed segmentation model can be a foundational step in further mammogram analysis, such as for breast positioning and localized image processing tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信