{"title":"醋酸分解反应动力学的DFT方法研究","authors":"A. Verma, N. Kishore","doi":"10.2174/1874123101812010014","DOIUrl":null,"url":null,"abstract":"Excessive amount of oxygen content in unprocessed bio-oil deteriorates the quality of bio-oil which cannot be used in transportation vehicles without upgrading. Acetic acid (CH3COOH) is a vital component of ‘acids’ catalogue of unprocessed bio-oil produced from thermochemical conversions of most of biomass feedstocks such as switchgrass, alfalfa, etc. In this study, the decomposition reactions of acetic acid are carried out by two reaction pathways, i.e., decarboxylation and dehydration reactions. In addition, the reaction rates of decomposition are analysed in a wide range of temperatures, i.e., 298-900 K and at atmospheric pressure.","PeriodicalId":22933,"journal":{"name":"The Open Chemical Engineering Journal","volume":"52 1","pages":"14-23"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Kinetics of Decomposition Reactions of Acetic Acid Using DFT Approach\",\"authors\":\"A. Verma, N. Kishore\",\"doi\":\"10.2174/1874123101812010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive amount of oxygen content in unprocessed bio-oil deteriorates the quality of bio-oil which cannot be used in transportation vehicles without upgrading. Acetic acid (CH3COOH) is a vital component of ‘acids’ catalogue of unprocessed bio-oil produced from thermochemical conversions of most of biomass feedstocks such as switchgrass, alfalfa, etc. In this study, the decomposition reactions of acetic acid are carried out by two reaction pathways, i.e., decarboxylation and dehydration reactions. In addition, the reaction rates of decomposition are analysed in a wide range of temperatures, i.e., 298-900 K and at atmospheric pressure.\",\"PeriodicalId\":22933,\"journal\":{\"name\":\"The Open Chemical Engineering Journal\",\"volume\":\"52 1\",\"pages\":\"14-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Chemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874123101812010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874123101812010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetics of Decomposition Reactions of Acetic Acid Using DFT Approach
Excessive amount of oxygen content in unprocessed bio-oil deteriorates the quality of bio-oil which cannot be used in transportation vehicles without upgrading. Acetic acid (CH3COOH) is a vital component of ‘acids’ catalogue of unprocessed bio-oil produced from thermochemical conversions of most of biomass feedstocks such as switchgrass, alfalfa, etc. In this study, the decomposition reactions of acetic acid are carried out by two reaction pathways, i.e., decarboxylation and dehydration reactions. In addition, the reaction rates of decomposition are analysed in a wide range of temperatures, i.e., 298-900 K and at atmospheric pressure.