α阶和β型一致凸函数线性算子的预schwarzian范数

IF 0.4 4区 数学 Q4 MATHEMATICS
J. Dziok, H. Zayed
{"title":"α阶和β型一致凸函数线性算子的预schwarzian范数","authors":"J. Dziok, H. Zayed","doi":"10.1556/012.2019.56.3.1429","DOIUrl":null,"url":null,"abstract":"\n By making use of the pre-Schwarzian norm given by\n we obtain such norm estimates for Hohlov operator of functions belonging to the class of uniformly convex functions of order α and type β. We also employ an entirely new method to generalize and extend the results of Theorems 1, 2 and 3 in [3]. Finally, some inequalities concerning the norm of the pre-Schwarzian derivative for Dziok-Srivastava operator are also considered.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"21 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-Schwarzian norm for linear operators of uniformly convex functions of order α and type β\",\"authors\":\"J. Dziok, H. Zayed\",\"doi\":\"10.1556/012.2019.56.3.1429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n By making use of the pre-Schwarzian norm given by\\n we obtain such norm estimates for Hohlov operator of functions belonging to the class of uniformly convex functions of order α and type β. We also employ an entirely new method to generalize and extend the results of Theorems 1, 2 and 3 in [3]. Finally, some inequalities concerning the norm of the pre-Schwarzian derivative for Dziok-Srivastava operator are also considered.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2019.56.3.1429\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2019.56.3.1429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用本文给出的pre-Schwarzian范数,得到了一类α阶和β型一致凸函数的Hohlov算子的范数估计。我们还采用了一种全新的方法来推广和扩展[3]中定理1、2和3的结果。最后,讨论了Dziok-Srivastava算子的pre-Schwarzian导数范数的一些不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-Schwarzian norm for linear operators of uniformly convex functions of order α and type β
By making use of the pre-Schwarzian norm given by we obtain such norm estimates for Hohlov operator of functions belonging to the class of uniformly convex functions of order α and type β. We also employ an entirely new method to generalize and extend the results of Theorems 1, 2 and 3 in [3]. Finally, some inequalities concerning the norm of the pre-Schwarzian derivative for Dziok-Srivastava operator are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信