{"title":"新的无限族的近MDS码持有$t$-设计和最优的局部可恢复码","authors":"Ziling Heng, Xinran Wang","doi":"10.48550/arXiv.2210.05194","DOIUrl":null,"url":null,"abstract":"In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"182 1","pages":"113538"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New infinite families of near MDS codes holding $t$-designs and optimal locally recoverable codes\",\"authors\":\"Ziling Heng, Xinran Wang\",\"doi\":\"10.48550/arXiv.2210.05194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"182 1\",\"pages\":\"113538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.05194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New infinite families of near MDS codes holding $t$-designs and optimal locally recoverable codes
In ``Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inform. Theory, 2020, 66(9), pp. 5419-5428'', Ding and Tang made a breakthrough in constructing the first two infinite families of NMDS codes holding $2$-designs or $3$-designs. Up to now, there are only a few known infinite families of NMDS codes holding $t$-designs in the literature. The objective of this paper is to construct new infinite families of NMDS codes holding $t$-designs. We determine the weight enumerators of the NMDS codes and prove that the NMDS codes hold $2$-designs or $3$-designs. Compared with known $t$-designs from NMDS codes, ours have different parameters. Besides, several infinite families of optimal locally recoverable codes are also derived via the NMDS codes.