对픾0二分法的推广和对_(_)0二分法的强化

IF 0.9 1区 数学 Q1 LOGIC
B. D. Miller
{"title":"对픾0二分法的推广和对_(_)0二分法的强化","authors":"B. D. Miller","doi":"10.1142/S0219061321500288","DOIUrl":null,"url":null,"abstract":"We generalize the [Formula: see text] dichotomy to doubly-indexed sequences of analytic digraphs. Under a mild definability assumption, we use this generalization to characterize the family of Borel actions of tsi Polish groups on Polish spaces that can be decomposed into countably-many Borel actions admitting complete Borel sets that are lacunary with respect to an open neighborhood of the identity. We also show that if the group in question is non-archimedean, then the inexistence of such a decomposition yields a special kind of continuous embedding of [Formula: see text] into the corresponding orbit equivalence relation.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"80 1","pages":"2150028:1-2150028:19"},"PeriodicalIF":0.9000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the 픾0 dichotomy and a strengthening of the 피0ℕ dichotomy\",\"authors\":\"B. D. Miller\",\"doi\":\"10.1142/S0219061321500288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the [Formula: see text] dichotomy to doubly-indexed sequences of analytic digraphs. Under a mild definability assumption, we use this generalization to characterize the family of Borel actions of tsi Polish groups on Polish spaces that can be decomposed into countably-many Borel actions admitting complete Borel sets that are lacunary with respect to an open neighborhood of the identity. We also show that if the group in question is non-archimedean, then the inexistence of such a decomposition yields a special kind of continuous embedding of [Formula: see text] into the corresponding orbit equivalence relation.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"80 1\",\"pages\":\"2150028:1-2150028:19\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219061321500288\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061321500288","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们将[公式:见文本]二分法推广到解析有向图的双索引序列。在一个温和的可定义性假设下,我们利用这一推广来刻画波兰空间上的tsi波兰群的Borel行动族,这些Borel行动族可以分解为承认完全Borel集的可数多个Borel行动,这些完全Borel集相对于恒等式的开放邻域是空的。我们还证明,如果所讨论的群是非阿基米德的,那么这种分解的不存在会产生一种特殊的[公式:见文]连续嵌入到相应的轨道等价关系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the 픾0 dichotomy and a strengthening of the 피0ℕ dichotomy
We generalize the [Formula: see text] dichotomy to doubly-indexed sequences of analytic digraphs. Under a mild definability assumption, we use this generalization to characterize the family of Borel actions of tsi Polish groups on Polish spaces that can be decomposed into countably-many Borel actions admitting complete Borel sets that are lacunary with respect to an open neighborhood of the identity. We also show that if the group in question is non-archimedean, then the inexistence of such a decomposition yields a special kind of continuous embedding of [Formula: see text] into the corresponding orbit equivalence relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信